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Biomass gasification

− Renewable, weather independent energy source
− Gasification

→ Syngas (CO, H2, CO2, CxHy, H2O)
→ SNG, FT-diesel, dimethyl ether, methanol, ...

− Modelling needed to support development
of new process concepts and scale-up.

− Target of study:
development of modelling tool 
for comprehensive simulation 
of interconnected CFB processes
for indirect gasification. 12 MWth lime kiln gasifier,

Stora Enso mill, Varkaus, Finland.



Indirect steam gasification
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Three-dimensional model (CFB3D)

− In-house Fortran-code developed at LUT.
− Steady-state, semi-empirical engineering model.
− Applied for air/oxygen fired combustion, gasification, and calcium 

looping in bubbling and circulating fluidized bed processes.
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Modelled reaction system
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Geometry and mesh
− Gasifier

− Fuel input ≈ 12 MWth.
− Diameter 1.6 m, height 15 m.
− Fluidized by steam.
− Woody biomass & secondary steam 

to level height 1.9 m.

− Combustor
− Max. fuel input ≈ 2.1 MWth.
− Diameter 1.4 m, height 15 m.
− Fluidized by air.
− Make-up sand, limestone, and 

secondary air to level 1.1 m.
− Additional fuel feed to level 0.5 m.

− Reactors coupled in code.



Boundary conditions
− Fuel = wood based biomass 

− 11% char, 62% volatiles, 25% moisture, LHV 14 MJ/kg,af.
− Four cases with varying fuel feed to combustor (0...2.1 MWth).
− Same excess oxygen in combustor in each case (3.94 %-vol,dry).

Parameter Units Case A01 Case A02 Case A03 Case A04
Steam flow to gasifier (kg/s) 0.45 ... ... ...
Primary steam ratio (%) 40 ... ... ...
Steam temperature (ºC) 180 ... ... ...
Air flow to combustor (kg/s) 1.84 2.06 1.62 1.38
Primary air ratio (%) 50 ... ... ...
Air temperature (ºC) 280 ... ... ...
Fuel feed to gasifier (kg/s) 0.9 ... ... ...
Fuel feed to combustor (kg/s) 0.10 0.15 0.05 0.00
Sand feed (kg/s 0.05 ... ... ...
Limestone feed (kg/s) 0.01 ... ... ...
Solid feed temperatures (ºC) 30 ... ... ...



3D-model results at centre-plane, Case A01

 



Water-gas & Boudouard reaction 
and shift conversion (Case A01)
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Increasing water-gas reaction (C + H2O → CO + H2) → Higher CO & H2

Decreasing shift conversion (CO + H2O → CO2+ H2) → Higher CO, lower CO2 & H2

Net effects as function of temperature:
• H2 ≈ constant
• CO increasing
• CO2 decreasing
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Heat value of syngas and cold gas efficiency

Higher temperature → Higher gas yield from char 
→ Increasing heat value of gas

(Opposite effect when compared with air- or oxy-fired gasification)

The increase in heat value of gas is smaller than the increase of fuel input
→ Decreasing cold gas efficiency

𝜂𝜂𝐶𝐶𝐶𝐶 =
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Summary

− Indirect steam gasification system with interconnected CFB reactors 
was successfully simulated by a semi-empirical model approach.

− Process can be operated without additional fuel feed to combustor.

− Effects of increasing the fuel feed to combustor:
 Higher gasification temperature.
 Slightly higher heat value of syngas.
 Lower cold gas efficiency.

− Future targets: 
− Validation of model parameters based on measurement data.
− Modelling of sorbent enhanced gasification (FLEDGED-project).
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