Separation Enhanced Dimethyl Ether (DME) Synthesis
Dr. Ir. Jurriaan Boon
21 June 2017, Eurogress, Aachen
R&D Strategy ECN Energy & Industry Programme
Separation enhanced DME synthesis

- DME: promising fuel for compression ignition vehicles
- Production of DME from biomass
- Conventional production of DME
- Separation enhanced DME synthesis
- Fledged: DME from biomass, renewable electricity
Dimethyl ether (DME)
DME: Fuel of choice
DME: Fuel of choice

• Promising in terms of GHG emissions, efficiency, economy

• Can be handled like LPG

• Behaves like diesel in a compression ignition engine
 without soot formation!
February 2017

SPECIAL FOCUS: CLEAN FUELS

DME as a diesel alternative in North America

Major trends in the global hydrocarbon processing industry include the regulatory-driven demand for clean, low-emissions fuels. Two decades of global efforts have shown that dimethyl ether (DME) can satisfy these drivers.

Sills, R. A., XTL & DME Institute

Major trends in the global hydrocarbon processing industry include the regulatory-driven demand for clean, low-emissions fuels. Two decades of global efforts have shown that dimethyl ether (DME) can satisfy these drivers. 1 DME has been used for many years as an aerosol propellant in cosmetic and other personal and household products, but this represents a small market. DME was first commercialized as a fuel in China as a liquefied petroleum gas (LPG) blendstock for the domestic home cooking/heating market. As a result, it now represents about 5% of global methanol demand. 2 This article focuses on the challenges and the significant progress that has been made of commercializing DME as a diesel alternative.
Fledged: DME from biomass and hydrogen

\[M = \frac{[H_2]}{[CO] + [CO_2]} = 2 \]
Production of DME

Methanol synthesis

\[\text{CO}_2 + 3\text{H}_2 \rightleftharpoons \text{CH}_3\text{OH} + \text{H}_2\text{O} \]

Water-gas shift (WGS)

\[\text{CO} + \text{H}_2\text{O} \rightleftharpoons \text{H}_2 + \text{CO}_2 \]

Methanol dehydration

\[2\text{CH}_3\text{OH} \rightleftharpoons \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O} \]
Conventional production of DME

Synthesis gas → Methanol synthesis → Methanol separation → H₂/CO/CO₂ recycle
Conventional production of DME

Synthesis gas → Methanol synthesis → Methanol separation → DME synthesis → DME separation → DME

H₂/CO/CO₂ recycle → Methanol recycle
Production of DME from biomass

Biomass

Steam

Air (if ind. gas)

Gasification process

Tar/PM removal

WGS unit

CO₂ separation

H₂S separation

ASU

O₂

H₂/CO/CO₂ recycle

MeOH synthesis

MeOH separation

MeOH synthesis

DME synthesis

DME separation

DME

MeOH recycle
Conventional versus direct synthesis

Conventional DME production

- Synthesis gas
- Methanol synthesis
- Methanol separation
- DME synthesis
- DME separation
- DME
- H₂/CO/CO₂ recycle
- Methanol recycle

Direct DME production

- Synthesis gas
- Direct DME synthesis
- DME separation
- DME
- CO/CO₂ recycle
- Optional CO recycle
Steam separation enhanced DME synthesis

Methanol synthesis

\[\text{CO}_2 + 3\text{H}_2 \rightleftharpoons \text{CH}_3\text{OH} + \text{H}_2\text{O} \]

Water-gas shift (WGS)

\[\text{CO} + \text{H}_2\text{O} \rightleftharpoons \text{H}_2 + \text{CO}_2 \]

Methanol dehydration

\[2\text{CH}_3\text{OH} \rightleftharpoons \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O} \]
Thermodynamic equilibrium

\[M = \frac{[H_2] - [CO_2]}{[CO] + [CO_2]} = 2 \]

25 bar(a)
54 mol% H₂
15 mol% CO
7.7 mol% CO₂
Equilibrium with in situ water removal

275 °C
25 bar(a)

54 mol% H₂
15 mol% CO
7.7 mol% CO₂

Composition / mol%
Steam slip / mol%

Composition
DME
CH₃OH
CO
CO₂

0.001 0.01 0.1 1
0 5 10 15 20 25 30 35 40

Experimental: sorption enhanced DME synthesis

[Diagram showing the process of sorption enhanced DME synthesis with Zeolite 3A, Cu/ZnO/Al₂O₃ catalyst, syngas, effluent, 275 °C, 25 bar(a) and 400 °C, 2 bar(a)].
Experimental: sorption enhanced DME synthesis
Experimental: breakthrough test

- **MS signal / A**
- **NDIR concentration / mol%**
- **Time / min**

Composition 3

- 275 °C
- 25 bar(a)
- 54 mol% H₂
- 15 mol% CO
- 7.7 mol% CO₂

Proof of concept
Separation enhanced DME synthesis

- Increased CO/CO$_2$ flexibility
- Increased DME yield
- Decreased CO$_2$ content

$M = 2$

Conventional direct DME synthesis
(thermodynamic calculation)

Sorption enhanced DME synthesis
(experimental observation)

275°C, 25 bar

- MethOH
- CO
- CO$_2$
- DME

Product C-distribution [mol%]
Conventional, direct, sorption-enhanced synthesis

Conventional DME production

- Synthesis gas → Methanol synthesis → Methanol separation → DME synthesis → DME separation → DME
 - H$_2$/CO/CO$_2$ recycle → Methanol recycle

Direct DME production

- Synthesis gas → Direct DME synthesis → DME separation → DME
 - CO/CO$_2$ recycle

Sorption-enhanced DME production (SEDMES)

- Synthesis gas → SEDMES → DME separation → DME
 - Optional CO recycle
Production of DME from biomass

Biomass
Steam
Air (if ind. gas)

Gasification process
Tar/PM removal
WGS unit
CO₂ separation
H₂S separation

O₂

ASU

MeOH synthesis
MeOH separation

H₂/CO/CO₂ recycle

MeOH recycle

MeOH

DME synthesis

DME separation

DME
Production of DME from biomass

The **FLEDGED** project will deliver a process for *bio-based dimethyl ether (DME)* production from *biomass* gasification, validated in *industrially relevant* environment (TRL5).
Separation enhanced DME synthesis

• DME: promising fuel for compression ignition vehicles
• Production of DME from biomass
• Conventional production of DME
 – Low DME yield
 – CO$_2$ production
 – Complex separation
• Sorption enhanced DME synthesis
 – Increased CO/CO$_2$ flexibility
 – Increased DME yield
 – Decreased CO$_2$ content
• Fledged: DME from biomass, renewable electricity
Gas separation, treatment & conversion

- Development of sorption technology to reduce industrial CO₂ emissions
- Development of membrane reactors for hydrogen production
- Conversion of industrial waste streams into chemicals and transport fuels
Industrial integration of renewable electricity

• Development of processes to produce chemicals and fuels with the help of electricity, e.g. hydrogen
• Development of technology to flexibly convert renewable electricity into heat
This project has received funding from the ministry of Economic Affairs of The Netherlands through the ECN Ideation Challenge programme. This project has also received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 727600.