Sorption Enhanced Gasification: Process validation and investigations on the syngas composition in a 200 kW$_{th}$ dual fluidized bed facility

Selina Hafner, Reinhold Spörl, Günter Scheffknecht

23rd International Conference on Fluidized Bed Conversion

14th May 2018
Motivation: Reduction of CO₂ emissions
Substitution of fossil fuels by liquid biofuels

- Dimethyl ether (DME):
 - Can be used in diesel engines with minor modifications
 - Simple handling and storage requirements
 - Clean combustion behaviour

- FLEDGED project: Novel biomass to DME process

\[M = \frac{y_{H_2} - y_{CO_2}}{y_{CO} + y_{CO_2}} = 2 \]
Sorption Enhanced Gasification (SEG) Process
Introduction to the SEG process

Gasifier/Carbonator
- **Carbonation:**
 \[\text{CaO} + \text{CO}_2 \rightarrow \text{CaCO}_3 \quad \Delta h_R < 0 \]
- **Water-gas-shift**
 \[\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \quad \Delta h_R < 0 \]

Combustor/Calciner
- **Calcination:**
 \[\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \quad \Delta h_R > 0 \]
- **Char combustion**
 \[\text{C} + \text{O}_2 \rightarrow \text{CO}_2 \quad \Delta h_R < 0 \]
SEG process
CaO/CaCO₃ equilibrium

Calculated based on: Limestone Calcination Nearby Equilibrium: Kinetics, CaO Crystal Structure, Sintering and Reactivity
The Journal of Physical Chemistry C 2015 119 (4), 1623-1641, DOI: 10.1021/jp508745u
SEG process

Properties and influencing parameters

- Production of a N_2 free syngas: no oxygen or external heating needed
- Adjustment of the C/H content in the syngas by CO_2 absorption
 - Syngas composition can be modified for different downstream synthesis processes
- Low tar contents in the syngas due to catalytic effect of CaO
- Low sulfur contents in the syngas (gasifier) and flue gas (calciner) due to sulfur capture by CaO

- Influencing parameters:
 - Biomass
 - Gasification temperature
 - Steam-to-Carbon ratio (S/C)
 - Looping ratio
 - …
Experimental setup
Experimental setup
200 kW\textsubscript{th} SEG Pilot Plant

<table>
<thead>
<tr>
<th>Gasifier/ Carbonator</th>
<th>Combustor/ Calciner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor height</td>
<td>6 m</td>
</tr>
<tr>
<td>Reactor diameter</td>
<td>0.33 m</td>
</tr>
<tr>
<td>Gas velocity</td>
<td>0.5 – 1.5 m/s</td>
</tr>
<tr>
<td>Reactor height</td>
<td>10 m</td>
</tr>
<tr>
<td>Reactor diameter</td>
<td>0.21 m</td>
</tr>
<tr>
<td>Gas velocity</td>
<td>3.5 – 6 m/s</td>
</tr>
</tbody>
</table>

- **Bubbling fluidized bed**
 - No external heating
 - Temperature controlled by solid looping rate
 - Solid circulation rate is adjusted by a screw conveyor

- **Circulating fluidized bed**
 - No external heating
 - Temperature controlled by combustion of biomass and char particles from the gasifier
Experimental setup

Biomass and bed material composition

• Biomass: wood pellets

<table>
<thead>
<tr>
<th></th>
<th>H_u</th>
<th>Y_{H2O}</th>
<th>Y_{ash}</th>
<th>Y_V</th>
<th>Y_{FC}</th>
<th>Y_C</th>
<th>Y_H</th>
<th>Y_N</th>
<th>Y_S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J/g,ad</td>
<td>wt%,ad</td>
<td>wt%,db</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood pellets</td>
<td>17358</td>
<td>6.0</td>
<td>0.2</td>
<td>82.7</td>
<td>17.3</td>
<td>50.8</td>
<td>6.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

H_u – net calorific value
Y – mass fraction in the fuel
V – volatiles
FC – fixed carbon
ad – air dried
db – dry basis
daf – dry ash free

• Bed material: German limestone ($d_p = 100 – 300 \, \mu m$)

<table>
<thead>
<tr>
<th></th>
<th>x_{CaO}</th>
<th>x_{MgO}</th>
<th>x_{SiO2}</th>
<th>x_{Al2O3}</th>
<th>x_{others}</th>
<th>$x_{CO2}^{2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wt%, db</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German limestone$^{1)}$</td>
<td>55.4</td>
<td>0.7</td>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
<td>43.7</td>
</tr>
</tbody>
</table>

1) Limestone analysis is not normalized to 100%
2) Mass fraction of CO_2 that is released as CO_2 during calcination
Experimental setup

Experimental parameters

- Biomass: wood pellets
- Bed material: German limestone ($d_p = 100 – 300 \, \mu m$)
- Gasification temperature $\vartheta_{\text{Gasification}}$: 600 – 774 °C
 - controlled by transfer mass flow between Calciner and Gasifier
 - syngas composition not only influenced by gasifier temperature, but also by the sorbent looping ratio
- Calcination temperature $\vartheta_{\text{Calcination}}$: 910 – 935 °C
- Steam-to-Carbon-ratio S/C: 1.5 mol$_{H2O}$/mol$_C$
- Steady state conditions at each experimental point: 1 – 3 h
Experimental results
Experimental results
Trends of temperatures and syngas composition

- Stable operation of the gasifier and calciner could be demonstrated
- Syngas composition at a gasification temperature of 757 °C:
 \[y_{H2} = 62 \text{ vol}\%_{wf} \quad y_{CO} = 13 \text{ vol}\%_{wf} \quad y_{CO2} = 13 \text{ vol}\%_{wf} \]
 \[y_{CH4} = 10 \text{ vol}\%_{wf} \quad y_{CxHy} = 2 \text{ vol}\%_{wf} \]

Fuel: wood pellets
Bed material: limestone
S/C molar ratio: 1.5
Gasification temperature: 757±8 °C
Calcination temperature: 919±8 °C
Experimental results

Gas concentrations and M-module vs. gasification temperature

- Increasing gasification temperature:
 - \(y_{H2} \downarrow \quad y_{CO} \uparrow \quad y_{CO2} \uparrow \)
 - M-module \(\downarrow \)
 - due to \(\text{CaCO}_3/\text{CaO} \) – equilibrium

- gasification temperature of about 757 °C is needed for \(M = 2 \)

Fuel: wood pellets
Bed material: limestone
S/C molar ratio: 1.5
Gasification ratio: 600 - 774 °C
Calcination temperature: 910 - 935 °C
Summary and conclusion
Summary and conclusion

• Process can be operated at stable conditions in a 200 kW\textsubscript{th} DFB pilot scale facility with flexible variation of the gasification temperature between 600 and 774 °C

• Syngas composition/ M-module is strongly influenced by gasification temperature
 - due to the temperature dependency of the CaCO\textsubscript{3}/CaO equilibrium
 - SEG is very flexible in regard to the adjustment of the syngas composition for a subsequent synthesis process

• Gasification temperature of about 757 °C is needed for M = 2
 - suitable for production of DME by sorption enhanced DME synthesis process
Acknowledgement

The FLEDGED project has received funding from the European Union`s Horizon 2020 research and innovation programme under grant agreement No 727600.

www.fledged.eu

Disclaimer: The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.
Thank you!

Selina Hafner

e-mail selina.hafner@ifk.uni-stuttgart.de
phone +49 (0) 711 685-67806
fax +49 (0) 711 685-63491

Universität Stuttgart
Institut für Feuerungs- und Kraftwerkstechnik
Pfaffenwaldring 23 • 70569 Stuttgart • Germany