

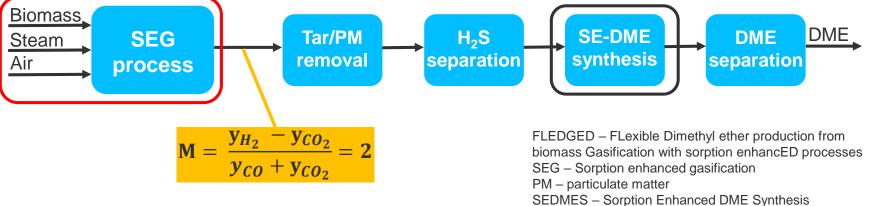
University of Stuttgart

Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

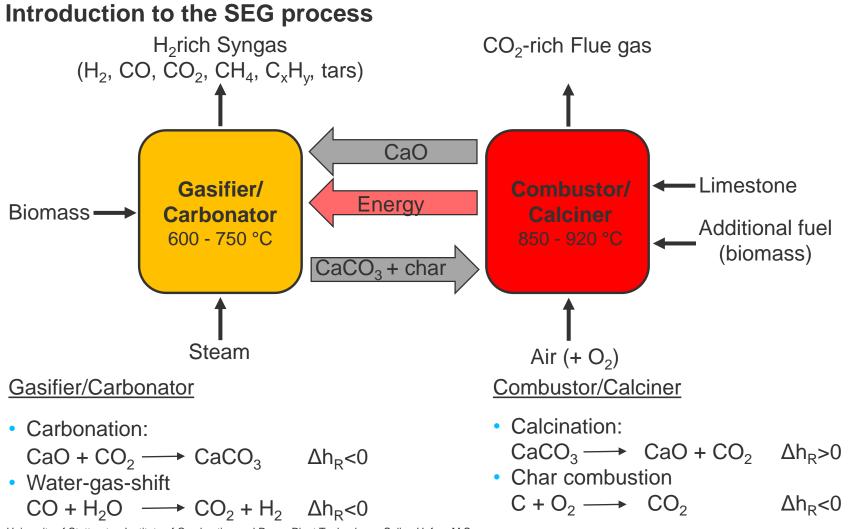
> Sorption Enhanced Gasification: Process validation and investigations on the syngas composition in a 200 kW_{th} dual fluidized bed facility

Selina Hafner, Reinhold Spörl, Günter Scheffknecht 23rd International Conference on Fluidized Bed Conversion

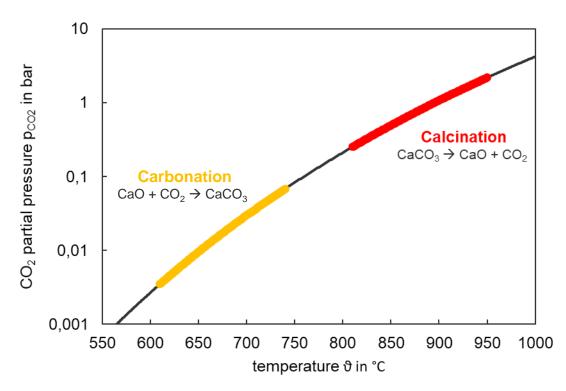
14th May 2018



Motivation: Reduction of CO₂ emissions


Substitution of fossil fuels by liquid biofuels

- Dimethyl ether (DME):
 - · Can be used in diesel engines with minor modifications
 - Simple handling and storage requirements
 - Clean combustion behaviour
- FLEDGED project: Novel biomass to DME process



Sorption Enhanced Gasification (SEG) Process

SEG process

CaO/CaCO₃ equilibrium

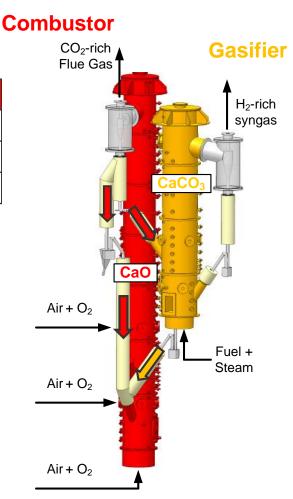
Calculated based on: Limestone Calcination Nearby Equilibrium: Kinetics, CaO Crystal Structure, Sintering and Reactivity J. M. Valverde, P. E. Sanchez-Jimenez, and L. A. Perez-Maqueda *The Journal of Physical Chemistry C* 2015 *119* (4), 1623-1641, DOI: 10.1021/jp508745u

SEG process

Properties and influencing parameters

- Production of a N₂ free syngas: no oxygen or external heating needed
- Adjustment of the C/H content in the syngas by CO₂ absorption
 - syngas composition can be modified for different downstream synthesis processes
- Low tar contents in the syngas due to catalytic effect of CaO
- Low sulfur contents in the syngas (gasifier) and flue gas (calciner) due to sulfur capture by CaO
- Influencing parameters:
 - Biomass
 - Gasification temperature
 - Steam-to-Carbon ratio (S/C)
 - Looping ratio

^{...}


200 kW_{th} SEG Pilot Plant

Gasifier/ Car	bonator	Combustor/ Calciner			
Reactor height	6 m	Reactor height	10 m		
Reactor diameter	ctor diameter 0.33 m		0.21 m		
Gas velocity	0.5 – 1.5 m/s	Gas velocity	3.5 – 6 m/s		

- Bubbling fluidized bed
- No external heating
- Temperature controlled by solid looping rate
- Solid circulation rate is adjusted by a screw conveyor

Circulating fluidized bed

- No external heating
- Temperature controlled by combustion of biomass and char particles from the gasifier

Biomass and bed material composition

Biomass: wood pellets

	H _u	Y _{H2O}	γ_{ash}	$\gamma_{\rm V}$	Y _{FC}	Υc	Υ _H	Υ _N	Υs
	J/g,ad	wt%,ad	wt%,db	wt%,daf					
Wood pellets	17358	6.0	0.2	82.7	17.3	50.8	6.1	0.2	0.1

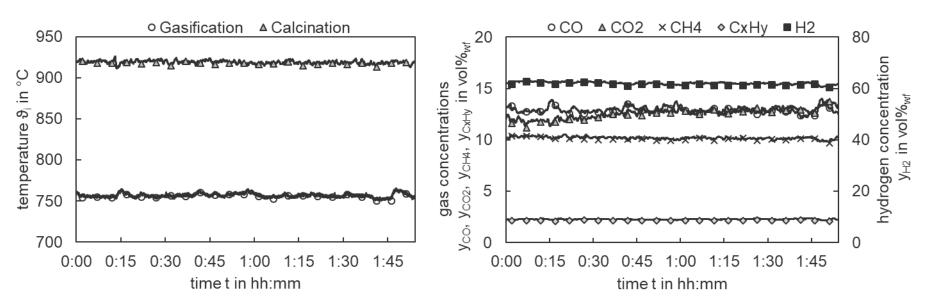
 H_u – net calorific value γ – mass fraction in the fuel V – volatiles FC – fixed carbon ad – air dried db – dry basis daf – dry ash free

• Bed material: German limestone ($d_P = 100 - 300 \mu m$)

	х _{СаО}	x _{MgO}	X _{SiO2}	X _{AI2O3}	X _{others}	x _{CO2} ²⁾	
	wt%, db						
German limestone ¹⁾	55.4	0.7	0.4	0.1	0.2	43.7	

1) Limestone analysis is not normalized to 100%

2) Mass fraction of CO₂ that is released as CO₂ during calcination

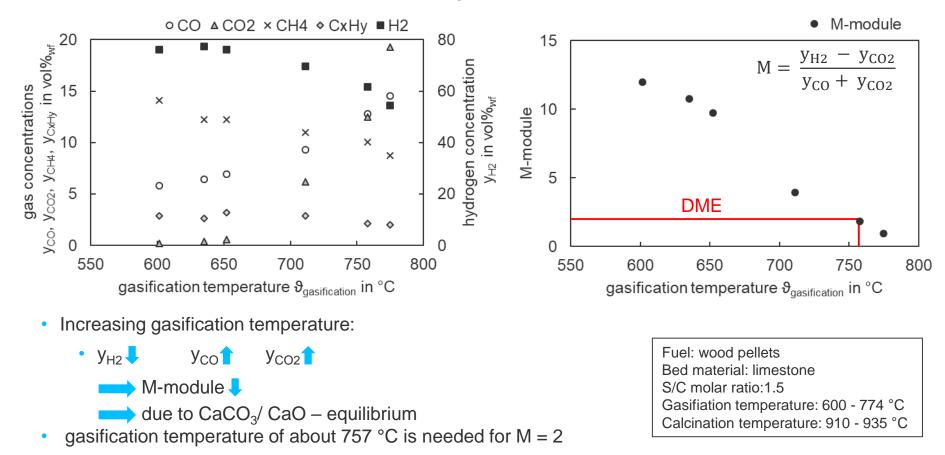

Experimental parameters

- Biomass: wood pellets
- Bed material: German limestone ($d_P = 100 300 \ \mu m$)
- Gasification temperature $\vartheta_{Gasification}$: 600 774 °C
 - controlled by transfer mass flow between Calciner and Gasifier
 - syngas composition not only influenced by gasifier temperature, but also by the sorbent looping ratio
- Calcination temperature ϑ_{Calcination}: 910 935 °C
- Steam-to-Carbon-ratio S/C: 1.5 mol_{H2O}/mol_C
- Steady state conditions at each experimental point: 1 3 h

Experimental results

Experimental results

Trends of temperatures and syngas composition



- Stable operation of the gasifier and calciner could be demonstrated
- Syngas composition at a gasification temperature of 757 °C: $y_{H2} = 62 \text{ vol}\%_{wf}$ $y_{CO} = 13 \text{ vol}\%_{wf}$ $y_{CO2} = 13 \text{ vol}\%_{wf}$ $y_{CH4} = 10 \text{ vol}\%_{wf}$ $y_{CXHv} = 2 \text{ vol}\%_{wf}$

Fuel: wood pellets Bed material: limestone S/C molar ratio:1.5 Gasification temperature: 757±8 °C Calcination temperature: 919±8 °C

Experimental results

Gas concentrations and M-module vs. gasification temperature

Summary and conclusion

Summary and conclusion

- Process can be operated at stable conditions in a 200 kW_{th} DFB pilot scale facility with flexible variation of the gasification temperature between 600 and 774 °C
- Syngas composition/ M-module is strongly influenced by gasification temperature
 due to the temperature dependency of the CaCO₃/CaO equilibrium
 SEG is very flexible in regard to the adjustment of the syngas composition for a subsequent synthesis process
- Gasification temperature of about 757 °C is needed for M = 2

suitable for production of DME by sorption enhanced DME synthesis process

Acknowledgement

The FLEDGED project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600.

www.fledged.eu

Disclaimer: The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Thank you!

Selina Hafner

e-mail selina.hafner@ifk.uni-stuttgart.de phone +49 (0) 711 685-67806 fax +49 (0) 711 685-63491

Universität Stuttgart Institut für Feuerungs- und Kraftwerkstechnik Pfaffenwaldring 23 • 70569 Stuttgart • Germany

ıfk