In situ CO₂-rich syngas pre-treatment to promote the methanol production rate over CZA catalysts

C. Peinado; D. Liuzzi; M. Retuerto; M. A. Peña; S. Rojas. Institute of Catalysis and Petrochemistry (CSIC), Marie Curie street, 2, 28049, Madrid, Spain

Introduction

<u>Objective</u>: in-situ increasing the CO/CO_2 ratio of biomass-derived CO_2 -rich syngas feed via RWGS before syngas reaches the syngas-to-methanol catalyst to enhance syngas conversion per pass:

Syngas + CO₂/CO + CO₂/CO + Combined Methanol Catalyst + CO₂/CO + Combined Methanol Catalyst + Combined Me

R-WGS reaction decreases CO2/CO ratio in the syngas...

...but water is a product in the ${\it CO}_2$ hydrogenation (thermodynamically disadvantageous) and can deactivate the methanol catalyst

Experimental

Catalytic bed configurations studied	GHSV	
	mL syngas h ⁻¹ mL ⁻¹ CZA_60	mL syngas h ⁻¹ mL ⁻¹ whole bed
CZA_60	7500	7500
CZA_30/CZA_60 = 1	7500	3750
$CZA_30/CZA_60 = 2$	7500	2500
$CZA_30/CZA_60 = 2 + 3A$	7500	2500
CZA_30/CZA_60 = 1	15000	7500

Results

The use of $CZA_3O/CZA_6O = 1$ increases the conversion of C per pass in comparison with the single CZA_6O bed when GHSV is maintained over the CZA_6O .

The comparison between $CZA_30/CZA_60 = 1$ and 2 reveals that the former leads to a higher C conversion.

The use of the sorbent zeolite 3A increases the C conversion, avoiding, at least in part, the unfavourable effect of the formed water.

Both the pre-treatment and the water removal increase the activity of the CZA_60.

Comparing CZA_60 and $CZA_30/CZA_60 = 1$ beds maintaining the GHSV in the whole bed it is observed that the TOF remains practically constant despite the formed water.

The only catalyst over which methanol is produced

C conversion (top) and TOF (bottom) referred to the surface Cu in the CZA_60 for the different bed configurations and operating conditions

Conclusions

- A pre-treatment of a CO_2 -rich syngas through r-WGS prior to the methanol synthesis process increases the activity of the CZA methanol catalyst in comparison to the same process without pre-treatment.
- The configuration of the double catalytic bed (WGS catalyst/methanol catalyst ratio and addition of water sorbent) can be optimized depending on the composition of the syngas.

Acknowledgements

FLEDGED project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600

