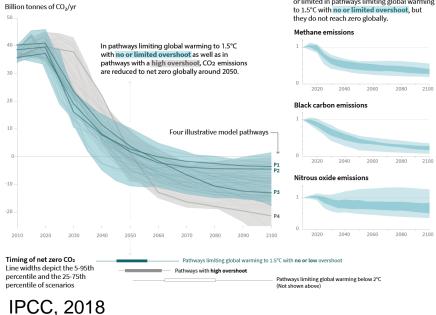

> MAXIMISING CARBON EFFICIENCY THROUGH STEAM SEPARATION ENHANCEMENT


ECCE 12 | J. van Kampen

CO₂ EMISSION REDUCTION!

Global total net CO₂ emissions

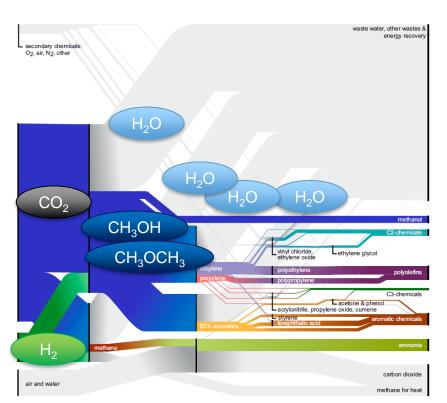
Non-CO₂ emissions relative to 2010

Emissions of non-CO2 forcers are also reduced or limited in pathways limiting global warming

- CCS (up to 1218 GtCO₂ until 2100) Fuels, chemicals, materials: CO_2 & energy CCS & CCUS & CCU - joint development
- Investing in technology relevant today, equally relevant in 2050
- Where possible, let CCU enable CCS

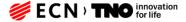
CO₂ AND H₂ TO PRODUCTS

Mass flows within the chemical industry (2030)

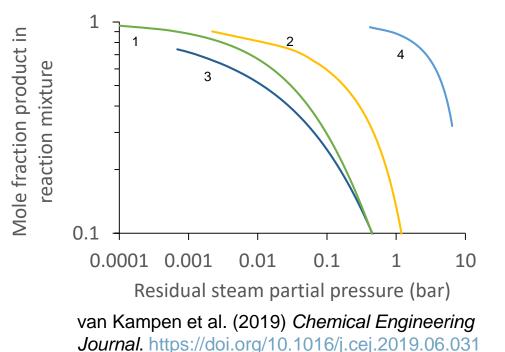

 $CO_2 + 3H_2 \leftrightarrow CH_3OH + H_2O$

 $2CO_2 + 6H_2 \leftrightarrow CH_3OCH_3 + 3H_2O$

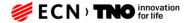
 DME as Simple, Available, Sustainable, Low-Emission, Infrastructure Compatible Fuel <u>https://www.aboutdme.org/</u>



ECN > **TNO** innovation for life

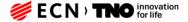

Kätelhön et al. (2019). *Proceedings of the National* Academy of Sciences, 116(23), 11187-11194.17 September 2019

DIRECT SYNTHESIS FROM CO₂


- Steam separation enhancement: process intensification for CO₂ utilisation
- Reactions from CO₂:
 - Reverse water-gas shift
 - DME synthesis
 - Methanol synthesis
 - Methanation
- Reducing the steam partial pressure in situ
 - Adsorbents
 - Membranes

SEPARATION ENHANCEMENT: ADSORBENTS

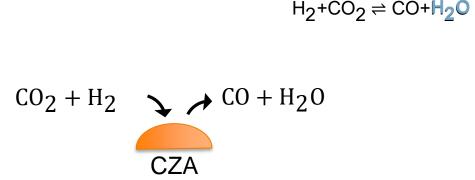
ECN > TNO innovation for life

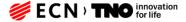


REVERSE WATER-GAS SHIFT

Reverse water-gas shift (WGS)

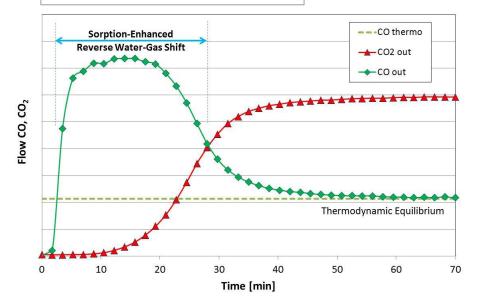
 $H_2+CO_2 \rightleftharpoons CO+H_2O$





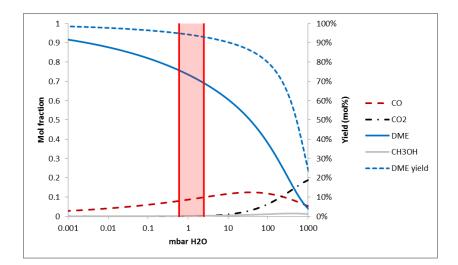
LTA

SORPTION ENHANCED RWGS


Reverse water-gas shift (WGS)

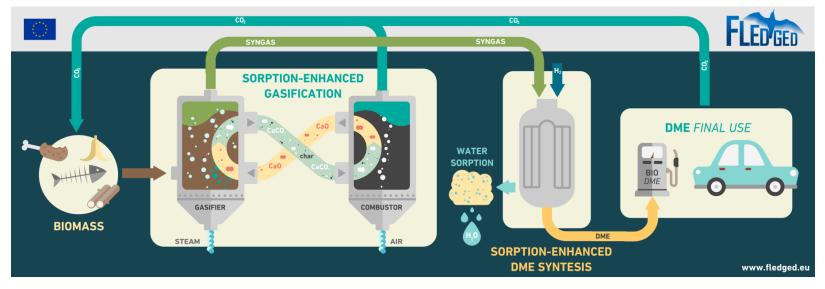
SORPTION ENHANCED RWGS

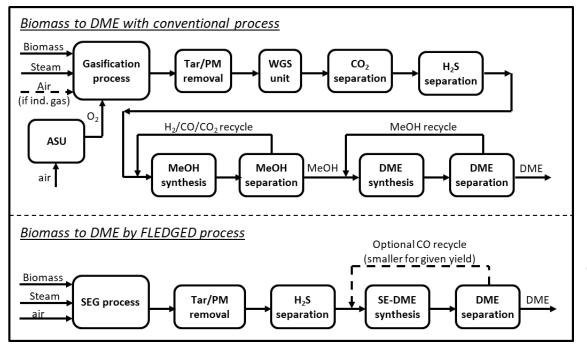
>98% selectivity to CO



SORPTION ENHANCED DME SYNTHESIS

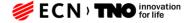
- > Equilibrium model with in situ water removal
- > Stoichiometric feed (CO₂), 275 °C, 25 bar(a)


- Target
 - > 90% DME yield
 - > Small residual CO₂ concentration


THE FLEDGED PROJECT

The FLEDGED project will deliver a process for Bio-based Dimethyl Ether (DME) production from biomass gasification, validated in industrially relevant environment (TRL5).

ECN > TNO innovation for life


FLEDGED: BIOMASS TO DME

https://youtu.be/JEn39Zi_aCg

Technological

innovation

EU INTERREG E2C PROJECT

ezc

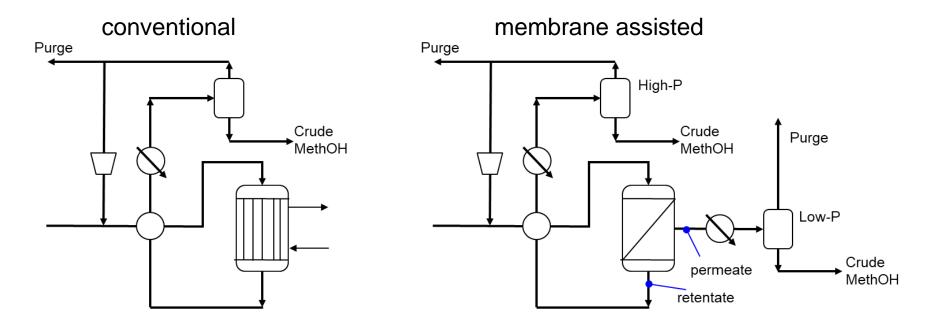
Electrons to High Value Chemical Products

International open innovation platform, open to additional industrial partners during and after the project

CO

http://www.voltachem.com/E2C

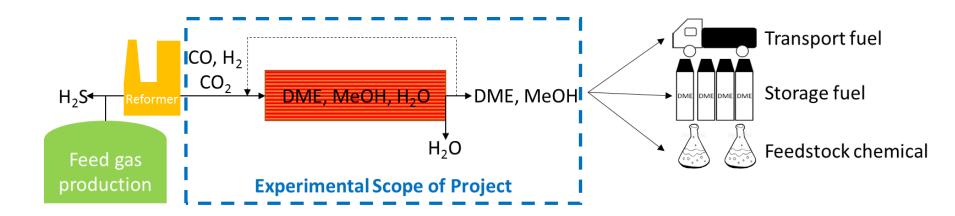
SEPARATION ENHANCEMENT: MENBRANES

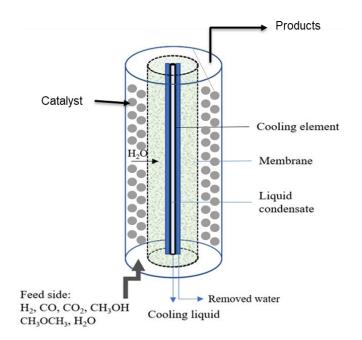


THE CONVERGE PROJECT

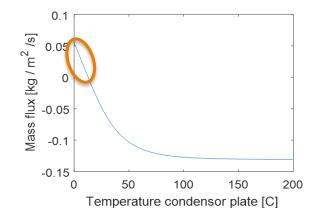
The CONVERGE project will validate an innovative process (TRL5) which will increase the biodiesel production by 12% per secondary biomass unit used and reduce the CAPEX by 10%.

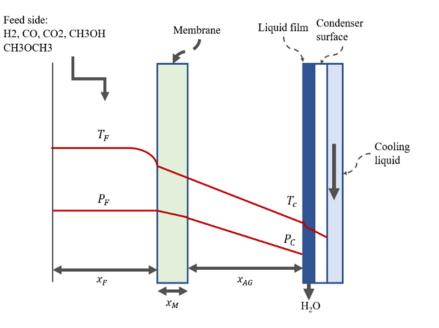
	Syngas pre-treatment	Syngas	Sorption Enhanced Reforming: H ₂ /CO ₂ separation		Electrochemical Hydrogen compression	НРН	Enhanced Methanol Membrane synthesis		+12% Green Biodiesel
	+5% efficiency		+15% efficiency		+15% efficiency		+10% efficiency	Γ	Production
Biomass gasification	CONVEL Carbon Valorisation in Energy-efficient Green	E	CO ₂		_				



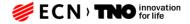

BIODIME

New process concept to produce DME from CO₂ rich gasses such as biogas


PERMEATION ENHANCED DME SYNTHESIS: REACTOR CONCEPT



REACTOR MODEL


- Mass transfer model with reactor kinetics for estimation of DME production
- > 50% increase in single-pass DME yield

SEPARATION ENHANCED PROCESSES FOR THE UTILISATION OF CO₂

- > Steam separation enhancement promising process intensification for CO₂ utilisation
- > Complex interplay of catalysis and separation
- > In situ steam removal to be addressed case specifically (not only theoretically)
- > Adsorbents
 - > Sorption enhanced reverse water-gas shift
 - Sorption enhanced dimethyl ether synthesis
- Membranes
 - > Enhanced methanol membrane synthesis
 - > Permeation enhanced dimethyl ether synthesis

ACKNOWLEDGEDMENTS

- ECN part of TNO
 - Biomass & Energy Efficiency, Petten, The Netherlands
 - > Sustainable Process & Energy Systems, Delft, The Netherlands

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600.

This project has received funding from the European Union's Interreg 2 Seas programme under grant agreement No 2S03-019 E2C.

ACKNOWLEDGEDMENTS

- ECN part of TNO
 - Biomass & Energy Efficiency, Petten, The Netherlands
 - Sustainable Process & Energy Systems, Delft, The Netherlands

CarbON Valorisation in Energy-efficient Green fuels

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818135.

This project has received funding from RVO (NL), FZJ/PtJ (DE), Gassnova (NO), UEFISCDI (RO), BEIS (UK) and is co-funded by the European Commission under the Horizon 2020 programme ACT, grant agreement No 691712.

THANK YOU FOR YOUR ATTENTION

122212

TNO.NL/ECNPARTOFTNO

ECN > TNO innovation for life