

DESIGN OPTIMIZATION OF A HEAT RECOVERY ORC FOR A NOVEL BIOMASS TO METHANOL PLANT

<u>Cristina Elsido</u>, Emanuele Martelli^{*}, Marco Astolfi, Giulio Guandalini, Matteo C. Romano Department of Energy Politecnico di Milano, Italy

Introduction

Novel biomass to methanol plant

Flexible "sorption-enhanced" gasification reactor (SEG)

Gasification concept based on indirect gasification in a dual fluidized bed system using a CaO-rich bed material

POLITECNICO

MILANO 1863

Offgas

٠

٠

٠

POLITECNICO

MILANO 1863

Performances indexes

• Gasifier island

 $CGE_{gasif} = \frac{G_{syngas}LHV_{syngas}}{G_{biomass}LHV_{biomass}}$

• MeOH synthesis island

 $CGE_{MeOH} = \frac{G_{MeOH}LHV_{MeOH}}{G_{syngas}LHV_{syngas}}$

Dryer		
Biomass thermal input to the plant (LHV)	10	MW _{th}
Biomass thermal input after drying (LHV)	10.88	MW _{th}
Dryer heat input	1.05	MW _{th}
SEG		
Syngas production (wet)	0.84	kg/s
Syngas heating value (LHV wet)	8.99	MJ/kg
Gasifier cold gas efficiency (CGE _{gasif})	69.32	%
Syngas compressors		
Compressor consumption	0.68	MW _{el}
Methanol synthesis		
MeOH production rate	0.28	kg/s
MeOH chemical power (LHV basis)	5.56	MW
Syngas to MeOH conversion efficiency	70 40	0/
(CGE _{MeOH})	/8.46	70
Biomass to MeOH conversion efficiency	55.55	%

Hot streams	Heat	Inlet temperature	Outlet temperature	Name	Constraints
SEG combustor	193.28 kW	910 °C	910 °C	H1	Only evaporators
SEG flue gases	1319.06 kW	910 °C	300 °C	H2	NO superheaters
Syngas cooler HT	1016.72 kW	800 °C	340 °C	H3	NO syngas preheaters
Syngas cooler LT	528.82 kW	340 °C	80 °C	H4	
Compressor	681.76 kW	122 °C	40 °C	H5	
intercoolers					
Scrubber cooler	1037.19 kW	78 °C	25 °C	H6	
MeOH reactor	659.49 kW	265 °C	265 °C	H7	MP evaporator
MeOH cooler	1575.64 kW	265 °C	40 °C	H8	
Condenser 2 nd column	609.69 kW	73 °C	73 °C	H9	
ICE flue gases	151.69 kW	360 °C	110 °C	H10	
ICE hot water	48.18 kW	94 °C	87 °C	H11	
Total	7821.51 kW				

Cold streams	Heat, kW	Inlet Outlet Name Constr temperature temperature		Constraints	
Syngas preheat	1058.50 kW	43 °C	254 °C	C1	
Scrubber heater	22.50 kW	25 °C	220 °C	C2	
Reboiler 1 st column	50.07 kW	81 °C	81 °C	C3	NO syngas coolers, flue gases, reactors
Reboiler 2 nd column	589.20 kW	82 °C	109 °C	C4	NO syngas coolers, flue gases, reactors
Biomass dryer	1309.66 kW	78 °C	120 °C	C5	
Total	2768.0 kW				

Steam network	Mass flow rate	Temperature	Pressure
Steam to gasifier	0.4335 kg/s	170 °C	1.5 bar
Total th. power	228.9 kW		

Hot streams	Heat	Inlet	Outlet	Name	Constraints				
		temperature	temperature						
SEG combustor	193.28 kW	910 °C	910 °C	H1	Only evaporators				
SEG flue gases	1319.06 kW	910 °C	300 °C	H2	NO superheaters				
Syngas cooler HT	1016.72 kW	800 °C	340 °C	H3	NO syngas preheaters	The gross e	energy av	vaila	vailable from n
Syngas cooler LT	528.82 kW	340 °C	80 °C	H4				····	
Compressor intercoolers	681.76 kW	122 °C	40 °C	H5		waste heat	and purifi	C2	cation off-ga
Scrubber cooler	1037.19 kW	78 °C	25 °C	H6				d	iai power (L
MeOH reactor	659.49 kW	265 °C	265 °C	H7	MP evaporator	which 17 %	6 must be p	r	provided to a
MeOH cooler	1575.64 kW	265 °C	40 °C	H8			•		
Condenser 2 nd column	609.69 kW	73 °C	73 °C	НO					
ICE flue gases	151.69 kW	360 °C	110 °C	H10					
ICE hot water	18 18 6/11	94 °C	87 °C	H11					
Total	7821.51 kW								
Cold streams	Heat, kW	Inlet	Outlet	Name	Constraints	Steam network	Mass flow		Temperature
		temperature	temperature				rate		
Syngas preheat	1058.50 kW	43 °C	254 °C	C1		Steam to gasifier	0.4335 kg/s		170 °C
Scrubber heater	22.50 kW	25 °C	220 °C	C2		Total th. power	228.9 kW		
Reboiler 1 st column	50.07 kW	81 °C	81 °C	C3	NO syngas coolers, flue gases,				
					reactors				
Reboiler 2 nd column	589.20 kW	82 °C	109 °C	C4	NO syngas coolers, flue gases, reactors				
Biomass dryer	1309.66 kW	78 °C	120 °C	C5					
Total	2768.0 kW								

Methodology^{1,2}:

- Combination of two superstructures (for Rankine cycles and for HEN synthesis)
- Simultaneous design of ORC and HEN, considering energy efficiency and capital costs (i.e., targeting the minimum Total Annual Cost, rather than just efficiency) → TECHNO-ECONOMIC OPTIMIZATION
- Challenging MINLP problem

Martelli, E., Elsido, C., Mian, A., & Marechal, F. (2017). Comput. Chem. Eng., vol. 106: p. 663-689
Elsido, C., Martelli, E., & Grossmann, I.E. (2019). Comput. Chem. Eng., vol. 128: p. 228-245

Objectives:

- Optimize the heat integration between hot and cold process streams as well as ORC design and steam network
- Optimize the layout of the **ORC + steam network** considering:
 - Multiple heat sources available
 - Steam users (gasifier, MeOH reactor)
 - Technical limits (metal dusting, required MeOH reactor cooling steam, etc.)

Methodology for heat integration study

Methodology^{1,2}:

- Combination of two superstructures (for Rankine cycles and for HEN synthesis)
- Simultaneous design of ORC and HEN, considering energy efficiency and capital costs (i.e., targeting the minimum Total Annual Cost, rather than just efficiency) → TECHNO-ECONOMIC OPTIMIZATION
- Challenging MINLP problem

Martelli, E., Elsido, C., Mian, A., & Marechal, F. (2017). Comput. Chem. Eng., vol. 106: p. 663-689
Elsido, C., Martelli, E., & Grossmann, I.E. (2019). Comput. Chem. Eng., vol. 128: p. 228-245

Mathematical model:

Binary decision variables:

- Activation of the heat exchanger between each hot stream and each cold stream in each stage of the HEN
- Activation of each ORC and steam network stream

Continuous variables:

- Heat exchanged
- Temperatures at hot end of each stage of the HEN
- Temperature difference for each heat exchanger
- Areas of the heat exchangers
- Mass flow rate of each ORC and steam network stream

Objective function: Minimize: Total Annual Cost

Methodology^{1,2}:

- Combination of two superstructures (for Rankine cycles and for HEN synthesis)
- Simultaneous design of ORC and HEN, considering energy efficiency and capital costs (i.e., targeting the minimum Total Annual Cost, rather than just efficiency) → TECHNO-ECONOMIC OPTIMIZATION
- Challenging MINLP problem

1. Martelli, E., Elsido, C., Mian, A., & Marechal, F. (2017). Comput. Chem. Eng., vol. 106: p. 663-689 2. Elsido, C., Martelli, E., & Grossmann, I.E. (2019). Comput. Chem. Eng., vol. 128: p. 228-245

Mathematical model:

Binary decision variables:

- Activation of the heat exchanger between each hot stream and each cold stream in each stage of the HEN
- Activation of each ORC and steam network stream

Continuous variables:

- Heat exchanged
- Temperatures at hot end of each stage of the HEN
- Temperature difference for each heat exchanger
- Areas of the heat exchangers
- Mass flow rate of each ORC and steam network stream

Objective function: Minimize: Total Annual Cost

Methodology^{1,2}:

Nonconvex Mixed Integer NonLinear Programming (MINLP) problem:

- modelled with **GAMS**
- solved using **ad-hoc bilevel decomposition algorithm**, employing CPLEX to solve the master level Mixed Integer Linear Program (MILP) and BARON for the lower level NonLinear Program (NLP)

Martelli, E., Elsido, C., Mian, A., & Marechal, F. (2017). Comput. Chem. Eng., vol. 106: p. 663-689
Elsido, C., Martelli, E., & Grossmann, I.E. (2019). Comput. Chem. Eng., vol. 128: p. 228-245

Mathematical model:

Binary decision variables:

- Activation of the heat exchanger between each hot stream and each cold stream in each stage of the HEN
- Activation of each ORC and steam network stream

Continuous variables:

- Heat exchanged
- Temperatures at hot end of each stage of the HEN
- Temperature difference for each heat exchanger
- Areas of the heat exchangers
- Mass flow rate of each ORC and steam network stream

Objective function: Minimize: Total Annual Cost

- ORC with one level of evaporation and two levels of condensation
- Steam network with two different pressure levels

- ORC with one level of evaporation and two levels of condensation
- Steam network with two different pressure levels

- ORC with one level of evaporation and two levels of condensation
- Steam network with two different pressure levels

Steam network with low-pressure level and HP level evap-cond loop

"p-h superstructure"

- ORC with one level of evaporation and two levels of condensation
- Steam network with two different pressure levels

- ORC with one level of evaporation and two levels of condensation
- Steam network with two different pressure levels

- ORC with one level of evaporation and two levels of condensation
- Steam network with two different pressure levels

- ORC with one level of evaporation and two levels of condensation
- Steam network with two different pressure levels

Two scenarios

Low electricity price = 50 \$/MWh

High electricity price =100 \$/MWh

Cost models for Heat Exchangers

Bare module cost of the heat exchanger between hot stream *i* and cold stream *j*:

$$C_{HX} = c_{ref} \left(\frac{A_{ij}}{A_{ref}} \right)$$

where: A_{ij} heat exchanger area, c_{ref} specific area cost at the reference area A_{ref} , f scale-law exponent

Data for the techno-economic optimization

Parameter	Value	Parameter	Value
Isentropic efficiency of turbines	0.8	Conv. heat transfer coef. of flue gases/syngas (process streams), W/m ² K	60-80
Hydraulic efficiency of pumps	0.8	Conv. heat transfer coef. of SEG combustor (radiative), W/m ² K	150
Mechanical/electrical efficiency of turbines and pumps	0.9	Conv. heat transfer coef. of liquid water, W/m ² K	5,000
Specific investment cost for turbines at ref. size of 4000 kW, \$/kW	430	Conv. heat transfer coef. of boiling water, W/m ² K	50,000
Scale factor for turbine cost	0.67	Conv. heat transfer coef. of superheated steam, W/m ² K	600
Specific cost for heat exchangers at ref. size (external area) of 500 m ² , \$/m ²	400	Conv. heat transfer coef. of condensing steam, W/m ² K	10,000
Scale factor for heat exchanger cost	0.6	Conv. heat transfer coef. of liquid and boiling organic fluids, W/m ² K	1,500
Annualization factor, 1/year	0.15	Conv. heat transfer coef. of superheated organic fluids, W/m ² K	1,000
Equivalent operating hours, h/year	7,884	Conv. heat transfer coef. of condensing organic fluids, W/m ² K	3,000
Multiplication factor for costs due to engineering, procurement & construction	1.5	Cooling water pumping and auxiliaries' cost, \$/kW	3

Hexane

Optimization results - Hexane	Energy target (maximum power output)	Electricity price = 50 \$/MWh	Electricity price = 100 \$/MWh
Mass flow rate ORC HP evap. level, kg/s	11.618	0.00	10.436
Mass flow rate ORC MP cond. level, kg/s	9.106	0.00	10.436
Mass flow rate ORC LP cond. level, kg/s	2.512	0.00	0.00
Mass flow rate HP st. network (evap/cond), kg/s	0.364/0.364	0.364/0.364	0.364/0.364
Mass flow rate LP st. network (evap/cond), kg/s	0.757/0.323	0.724/0.291	0.724/0.291
Regenerative ORC (Yes/No)	-	-	Yes
ORC net electric power output, kW	602.40	0.00	346.53
ORC net electric efficiency	16.84%	-	9.83%
Plant net electric efficiency	7.70%	-	4.43%
Number of heat exchangers	-	19	25
Cost of heat exchangers, k\$	-	659.47	1,175.17
Cost of machinery, k\$	-	0.00	525.65
TAC (ORC, steam network and HEN), k\$/year	-	109.59	-7.23
LCOE (ORC, steam network and HEN), \$/MWh	-	-	96.96

Hexane

Optimization results - Hexane	Energy target (maximum power output)	Electricity price = 50 \$/MWh	Electricity price = 100 \$/MWh
Mass flow rate ORC HP evap. level, kg/s	11.618	0.00	10.436
Mass flow rate ORC MP cond. level, kg/s	9.106	0.00	10.436
Mass flow rate ORC LP cond. level, kg/s	2.512	0.00	0.00
Mass flow rate HP st. network (evap/cond), kg/s	0.364/0.364	0.364/0.364	0.364/0.364
Mass flow rate LP st. network (evap/cond), kg/s	0.757/0.323	0.724/0.291	0.724/0.291
Regenerative ORC (Yes/No)	-	-	Yes
ORC net electric power output, kW	602.40	0.00	346.53
ORC net electric efficiency	16.84%	-	9.83%
Plant net electric efficiency	7.70%	-	4.43%
Number of heat exchangers	-	19	25
Cost of heat exchangers, k\$	-	659.47	1,175.17
Cost of machinery, k\$	-	0.00	525.65
TAC (ORC, steam network and HEN), k\$/year	-	109.59	-7.23
LCOE (ORC, steam network and HEN), \$/MWh	-	-	96.96

R1233zde

Optimization results – R1233zde	Energy target (maximum power	Electricity price = 50 \$/MWh	Electricity price = 100 \$/MWh
	output)		
Mass flow rate ORC HP evap. level, kg/s	30.773	0.00	23.044
Mass flow rate ORC MP cond. level, kg/s	24.294	0.00	17.906
Mass flow rate ORC LP cond. level, kg/s	6.479	0.00	5.138
Mass flow rate HP st. network (evap/cond), kg/s	0.364/0.364	0.364/0.364	0.364/0.364
Mass flow rate LP st. network (evap/cond), kg/s	0.996/0.563	0.724/0.291	0.890/0.456
Regenerative ORC (Yes/No)	-	-	Yes
ORC net electric power output, kW	519.46	0.00	401.76
ORC net electric efficiency	14.26%	-	10.12%
Plant net electric efficiency	6.64%	-	5.14%
Number of heat exchangers	-	19	30
Cost of heat exchangers, k\$	-	659.47	1,572.21
Cost of machinery, k\$	-	0.00	730.79
TAC (ORC, steam network and HEN), k\$/year	-	109.59	39.78
LCOE (ORC, steam network and HEN), \$/MWh	-	-	112.09

R1233zde

Optimization results – R1233zde	Energy target (maximum power	Electricity price = 50 \$/MWh	Electricity price = 100 \$/MWh
	output)		
Mass flow rate ORC HP evap. level, kg/s	30.773	0.00	23.044
Mass flow rate ORC MP cond. level, kg/s	24.294	0.00	17.906
Mass flow rate ORC LP cond. level, kg/s	6.479	0.00	5.138
Mass flow rate HP st. network (evap/cond), kg/s	0.364/0.364	0.364/0.364	0.364/0.364
Mass flow rate LP st. network (evap/cond), kg/s	0.996/0.563	0.724/0.291	0.890/0.456
Regenerative ORC (Yes/No)	-	-	Yes
ORC net electric power output, kW	519.46	0.00	401.76
ORC net electric efficiency	14.26%	-	10.12%
Plant net electric efficiency	6.64%	-	5.14%
Number of heat exchangers	-	19	30
Cost of heat exchangers, k\$	-	659.47	1,572.21
Cost of machinery, k\$	-	0.00	730.79
TAC (ORC, steam network and HEN), k\$/year	-	109.59	39.78
LCOE (ORC, steam network and HEN), \$/MWh	-	-	112.09

Conclusions

- This preliminary study on a **novel biomass to methanol production plant** showed that the use of a heat recovery ORC is economically advantageous **only for high electricity prices**
- Assumption: Nth-of-a-kind (NOAK) analysis: low contingencies, installation & engineering costs, etc.
- The techno-economic optimization, performed considering hexane and R1233zde as candidate fluids, shows that a **back-pressure ORC using hexane** is the best option in terms of costs
- The economic-optimal ORC designs are noticeably **less efficient than the energy target** estimates due to the need of limiting the investment costs of the equipment units
- Due to **hexane flammability**, extra costs (not considered here) in terms of investment and operating costs might appear to meet regulatory requirements and safety provisions
- **Future works** will address the optimization of the pressure and temperature levels of the ORC and the comparison with other working fluids

THANK YOU FOR YOUR ATTENTION!

ANY QUESTIONS?

<u>Cristina Elsido</u> Department of Energy Politecnico di Milano (Italy) <u>cristina.elsido@polimi.it</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 727600

Find out more: <u>www.fledged.eu</u> Contact us: <u>info@fledged.eu</u>

