SEPARATION ENHANCED REACTOR SYSTEMS FOR HIGH CARBON EFFICIENCIES: SEDMES

U/e ECNETIO innovation for life

CO₂ EMISSION REDUCTION!

Global total net CO₂ emissions

Non-CO₂ emissions relative to 2010

CO₂ AND H₂ TO PRODUCTS

Mass flows within the chemical industry (2030)

 $CO_2 + 3H_2 \leftrightarrow CH_3OH + H_2O$

 $2CO_2 + 6H_2 \leftrightarrow CH_3OCH_3 + 3H_2O$

DME as simple, available, sustainable, lowemission, infrastructure compatible fuel <u>https://www.aboutdme.org/</u>

Kätelhön et al. (2019), *Proceedings of the National* Academy of Sciences, *116*(23), 11187-11194. ^{30 October 2019}

DIRECT SYNTHESIS FROM CO₂

- Steam separation enhancement: process intensification for CO₂ utilisation
- Reactions from CO₂:
 - 1. Reverse water-gas shift
 - 2. DME synthesis
 - 3. Methanol synthesis
 - 4. Methanation
- Reducing the steam partial pressure in situ
 - Adsorbents
 - Membranes

SEPARATION ENHANCEMENT: ADSORBENTS

ECN) TNO innovation

CONVENTIONAL DME SYNTHESIS

SORPTION ENHANCED DME SYNTHESIS (SEDMES)

Direct DME:

Direct DME:

Adsorption:

FEED FLEXIBILITY

van Kampen et al., Chemical Engineering Journal 374 (2019) 1286–1303.

SEDMES FEED FLEXIBILIT

Product C-distribution (mol%)

- Direct DME synthesis
- 275 °C & 40 bar(a), incl. 30% inert
- Carbon is found in CO / CO_2 / MeOH / DME

- Sorption enhanced DME synthesis
- 275 °C & 40 bar(a), incl. 30% inert
- Carbon is found in CO /- CO_2 -/ MeOH/DME

Direct DME (Thermodynamic calculation)

Sorption enhanced DME (Experimental observation)

Separation enhanced reactor systems for high carbon efficiencies

SEDMES BREAKTHROUGH MODEL

SEDMES BREAKTHROUGH MODEL

CYCLE DESIGN

- > 3 column continuous process
- > 4 step TPSA cycle:
 - Adsorption
 - Depressurization (Blowdown)
 - > Purge
 - Repressurization

FEED & PRODUCT

WORKING CAPACITY

- Working capacity
 - > adsorption
 - > regeneration
- > Determines conversion & yield
 - > Limitation
- > Depends on
 - Process conditions
 - Regeneration

CATALYST VS. SORBENT

- Working capacity limited
- > Increasing adsorbent beneficial
 - > Penalty reducing catalyst

SELECTIVITY VS. PRODUCTIVITY

- > Lower GHSV, lower steam content
- > Trade-off
 - > Higher conversion & selectivity
 - Lower productivity

REGENERATION STRATEGY

- Temperature swing
- Pressure swing
 - Faster cycling
 - Higher productivity
- Window for PSA?

CONCLUSION

- Sorption enhanced DME synthesis (SEDMES):
 - Proof-of-concept
 - > High DME yield
 - Feed flexibility
 - > CO₂ not as product but as reactant
 - 3 column cycle design (TPSA)
 - Temperature swing regeneration to 400 °C
 - > Improves DME yield pre and post steam breakthrough
 - > Adsorbent capacity increases
 - Window for pressure swing regeneration?
 - Increased productivity

OUTLOOK

- Methanol route (indirect)
- Thermodynamic limitations result in:

Syngas recycle in methanol part

Methanol recycle in DME synthesis

Avoidable fuel gas production

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600.

TU/e

THANK YOU FOR YOUR ATTENTION

<u>http://www.fledged.eu/</u>

- https://youtu.be/JEn39Zi_aCg
-) Jasper van Kampen
- jasper.vankampen@tno.nl
- j.v.kampen@tue.nl

LED'GED

