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CO2 EMISSION REDUCTION!
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IPCC, 2018

CCS (up to 1218 GtCO2 until 2100)

Fuels, chemicals, materials:

CO2 & energy

CCS & CCUS & CCU – joint development

Detz and van der Zwaan (2019), Energy Policy.



CO2 AND H2 TO PRODUCTS 
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Mass flows within the chemical industry (2030)

𝐶𝑂2 + 3𝐻2 ↔ 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂

2𝐶𝑂2 + 6𝐻2 ⟷ 𝐶𝐻3𝑂𝐶𝐻3 + 3𝐻2𝑂

DME as simple, available, sustainable, low-

emission, infrastructure compatible fuel

https://www.aboutdme.org/
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Kätelhön et al. (2019), Proceedings of the National 

Academy of Sciences, 116(23), 11187-11194.

https://www.aboutdme.org/


DIRECT SYNTHESIS FROM CO2
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Residual steam partial pressure (bar)

Steam separation enhancement:

process intensification for CO2 utilisation

Reactions from CO2:

1. Reverse water-gas shift

2. DME synthesis

3. Methanol synthesis

4. Methanation

Reducing the steam partial pressure in situ

Adsorbents

Membranes
van Kampen et al. (2019), Chemical Engineering Journal. 

https://doi.org/10.1016/j.cej.2019.06.031
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https://doi.org/10.1016/j.cej.2019.06.031


SEPARATION 

ENHANCEMENT:

ADSORBENTS
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CONVENTIONAL DME SYNTHESIS

Methanol synthesis: CO2 + 3H2 ⇌ CH3OH + H2O

Reverse water-gas shift: H2 + CO2 ⇌ CO + H2O

Methanol dehydration: 2 CH3OH ⇌ CH3OCH3 + H2O

Separation enhanced reactor systems for high carbon efficiencies

Methanol 
synthesis

Methanol 
separation

DME synthesis DME separation DME
Synthesis 

gas

H2/CO/CO2 recycle Methanol recycle
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2CO2 + 6H2 2CH3OH+ 2H2O

CuZnAl

2CH3OH+ 2H2O CH3OCH3 + 3H2O

γ-Al



SORPTION ENHANCED DME SYNTHESIS (SEDMES)

Direct DME: 2 CO2 + 6 H2 → CH3OCH3 + 3 H2O

Direct DME: 2 CO + 4 H2 → CH3OCH3 + H2O

Adsorption: H2O (g) → H2O (ads)
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Methanol 
synthesis

Methanol 
separation

DME synthesis DME separation DME
Synthesis 

gas

a) Conventional DME production
H2/CO/CO2 recycle Methanol recycle

Direct DME synthesis DME separation DME

b) Direct DME production
CO/CO2 recycle

SEDMES DME separation DME

c) Sorption-enhanced DME production (SEDMES)
Optional CO recycle

Synthesis 
gas

Synthesis 
gas
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LTA



FEED FLEXIBILITY
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SEDMES FEED FLEXIBILITY
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Direct DME synthesis

275 °C & 40 bar(a), incl. 30% inert

Carbon is found in CO / CO2 / 

MeOH / DME

Sorption enhanced DME synthesis

275 °C & 40 bar(a), incl. 30% inert

Carbon is found in CO / CO2 / 

MeOH / DME

 1 
Sorption enhanced DME 

(Experimental observation) 
Direct DME 

(Thermodynamic calculation) 

van Kampen et al., Chemical Engineering Journal 374 (2019) 1286–1303.



SEDMES BREAKTHROUGH MODEL
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𝑟𝑅𝑊𝐺𝑆 =
𝑘′2𝜑𝐶𝑂2 ൯1 − ( Τ1 𝐾𝑝2)(𝜑𝐻2𝑂𝜑𝐶𝑂 Τ) (𝜑𝐶𝑂2𝜑𝐻2

1 + 𝐾2( Τ𝜑𝐻2𝑂 𝜑𝐻2) + 𝐾3𝜑𝐻2 + 𝐾4𝜑𝐻2𝑂

𝑟𝑀𝑒𝑂𝐻 =
𝑘′3𝜑𝐻2𝜑𝐶𝑂2 ൯1 − ( Τ1 𝐾𝑝3)(𝜑𝐶𝐻3𝑂𝐻𝜑𝐻2𝑂 Τ) (𝜑𝐶𝑂2𝜑𝐻2

3

1 + 𝐾2( Τ𝜑𝐻2𝑂 𝜑𝐻2) + 𝐾3𝜑𝐻2 + 𝐾4𝜑𝐻2𝑂
3𝑟𝐶𝐻3𝑂𝐻,1 =

𝑘1𝐾𝐶𝑂 𝜑𝐶𝑂𝜑𝐻2
Τ3 2 − Τ𝜑𝐶𝐻3𝑂𝐻 𝜑𝐻2

Τ1 2𝐾𝑝1

1 + 𝐾𝐶𝑂𝜑𝐶𝑂 + 𝐾𝐶𝑂2𝜑𝐶𝑂2 𝜑𝐻2
Τ1 2 + Τ𝐾𝐻2𝑂 𝐾𝐻2

Τ1 2 𝜑𝐻2𝑂

𝑟𝐶𝐻3𝑂𝐻,2 =
𝑘3𝐾𝐶𝑂2 𝜑𝐶𝑂2𝜑𝐻2

Τ3 2 − 𝜑𝐶𝐻3𝑂𝐻 Τ𝜑𝐻2𝑂 𝜑𝐻2
Τ3 2𝐾𝑝3

1 + 𝐾𝐶𝑂𝜑𝐶𝑂 + 𝐾𝐶𝑂2𝜑𝐶𝑂2 𝜑𝐻2
Τ1 2 + Τ𝐾𝐻2𝑂 𝐾𝐻2

Τ1 2 𝜑𝐻2𝑂

𝑟𝐶𝑂 =
𝑘2𝐾𝐶𝑂2 𝜑𝐶𝑂2𝜑𝐻2 − 𝜑𝐻2𝑂 Τ𝜑𝐶𝑂 𝐾𝑝2

1 + 𝐾𝐶𝑂𝜑𝐶𝑂 + 𝐾𝐶𝑂2𝜑𝐶𝑂2 𝜑𝐻2
Τ1 2 + Τ𝐾𝐻2𝑂 𝐾𝐻2

Τ1 2 𝜑𝐻2𝑂

Vanden Bussche et al., Journal of Catalysis 161 (1996) 1-10.Graaf et al., Chemical Engineering Science 43 (1988) 3185-3195.



SEDMES BREAKTHROUGH MODEL
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𝑟𝐶𝐻3𝑂𝐻,1 =
𝑘1𝐾𝐶𝑂 𝜑𝐶𝑂𝜑𝐻2

Τ3 2 − Τ𝜑𝐶𝐻3𝑂𝐻 𝜑𝐻2
Τ1 2𝐾𝑝1

1 + 𝐾𝐶𝑂𝜑𝐶𝑂 + 𝐾𝐶𝑂2𝜑𝐶𝑂2 𝜑𝐻2
Τ1 2 + Τ𝐾𝐻2𝑂 𝐾𝐻2

Τ1 2 𝜑𝐻2𝑂

𝑟𝐶𝐻3𝑂𝐻,2 =
𝑘3𝐾𝐶𝑂2 𝜑𝐶𝑂2𝜑𝐻2

Τ3 2 − 𝜑𝐶𝐻3𝑂𝐻 Τ𝜑𝐻2𝑂 𝜑𝐻2
Τ3 2𝐾𝑝3

1 + 𝐾𝐶𝑂𝜑𝐶𝑂 + 𝐾𝐶𝑂2𝜑𝐶𝑂2 𝜑𝐻2
Τ1 2 + Τ𝐾𝐻2𝑂 𝐾𝐻2

Τ1 2 𝜑𝐻2𝑂

𝑟𝐶𝑂 =
𝑘2𝐾𝐶𝑂2 𝜑𝐶𝑂2𝜑𝐻2 − 𝜑𝐻2𝑂 Τ𝜑𝐶𝑂 𝐾𝑝2

1 + 𝐾𝐶𝑂𝜑𝐶𝑂 + 𝐾𝐶𝑂2𝜑𝐶𝑂2 𝜑𝐻2
Τ1 2 + Τ𝐾𝐻2𝑂 𝐾𝐻2

Τ1 2 𝜑𝐻2𝑂

Graaf et al., Chemical Engineering Science 43 (1988) 3185-3195.



CYCLE DESIGN

3 column continuous process

4 step TPSA cycle:

Adsorption

Depressurization (Blowdown)

Purge

Repressurization
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FEED & PRODUCT

Feed

CO2:CO=2:1

M=2

Product

64% conversion (unoptimized)

Thermodynamically only 26%

Purge product: N2+H2O

recycle

30 October 2019Separation enhanced reactor systems for high carbon efficiencies



WORKING CAPACITY

Working capacity

adsorption

regeneration

Determines conversion & yield

Limitation

Depends on

Process conditions

Regeneration
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CATALYST VS. SORBENT

Working capacity limited

Increasing adsorbent beneficial

Penalty reducing catalyst
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SELECTIVITY VS. PRODUCTIVITY

Lower GHSV, lower steam content

Trade-off

Higher conversion & selectivity

Lower productivity

30 October 2019Separation enhanced reactor systems for high carbon efficiencies



REGENERATION STRATEGY

Temperature swing

Pressure swing

Faster cycling

Higher productivity

Window for PSA?
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CONCLUSION

Sorption enhanced DME synthesis (SEDMES): 

Proof-of-concept

High DME yield

Feed flexibility

CO2 not as product but as reactant

3 column cycle design (TPSA)

Temperature swing regeneration to 400 °C

Improves DME yield pre and post steam breakthrough

Adsorbent capacity increases

Window for pressure swing regeneration?

Increased productivity
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OUTLOOK
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Methanol route (indirect)

Thermodynamic limitations result in: 

Syngas recycle in 

methanol part 
Methanol recycle 

in DME synthesis

Avoidable fuel gas production
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THANK YOU FOR YOUR 

ATTENTION

Jasper van Kampen

jasper.vankampen@tno.nl

j.v.kampen@tue.nl
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http://www.fledged.eu/

@FledgedProject

https://youtu.be/JEn39Zi_aCg
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