

University of Stuttgart

Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

Syngas production for DME synthesis from Sorption Enhanced Gasification of Biomass: A Pilot Plantbased Case Study

Selina Hafner, Max Schmid, Günter Scheffknecht ICPS19 International Conference on Polygeneration Strategies 18th November 2019

Motivation: Reduction of CO₂ emissions

Substitution of fossil fuels by liquid biofuels

- Dimethyl ether (DME):
 - · Can be used in diesel engines with minor modifications
 - Simple handling and storage requirements
 - Clean combustion behaviour
- FLEDGED project: Novel biomass to DME process

Sorption Enhanced Gasification (SEG) Process

Process description

Sorption enhanced Gasification (SEG)

[1] data from J. M. Valverde, P. E. Sanchez-Jimenez, and L. A. Perez-Maqueda Limestone Calcination Nearby Equilibrium: Kinetics, CaO Crystal Structure, Sintering and Reactivity *The Journal of Physical Chemistry C* 2015 *119* (4), 1623-1641, DOI: 10.1021/jp508745u

University of Stuttgart - Institute of Combustion and Power Plant Technology - Selina Hafner

SEG process

Properties and influencing parameters

- Production of a N₂ free syngas: no oxygen or external heating needed
- Adjustment of the C/H content in the syngas by CO₂ absorption
 - syngas composition can be modified for different downstream synthesis processes
- Low tar contents in the syngas due to catalytic effect of CaO
- Low sulfur contents in the syngas (gasifier) and flue gas (calciner) due to sulfur capture by CaO
- Influencing parameters:
 - Biomass
 - Gasification temperature
 - Steam-to-Carbon ratio (S/C)
 - Looping ratio

^{...}

Experimental setup

Experimental setup

200 k W_{th} SEG Pilot Plant

Gasifier/ Car	bonator	Combustor/ Calciner			
Reactor height	6 m	Reactor height	10 m		
Reactor diameter	0.33 m	Reactor diameter	0.21 m		
Gas velocity	0.5 – 1.5 m/s	Gas velocity	3.5 – 6 m/s		

Bubbling fluidized bed

- No external heating
- Temperature controlled by solid looping rate
- Solid circulation rate is adjusted by a screw conveyor

- Circulating fluidized bed
- No external heating
- Temperature controlled by combustion of biomass and char particles from the gasifier

Experimental setup

Biomass and bed material composition

		Proximate analysis			Ultimate analysis							
Biomass		YH2O,ad	$\gamma_{ash,db}$	Yv,daf	¥FC,daf	Yc, daf	YH, daf	Yo, daf	YN, daf	Ys, daf	YCI, daf	H _u
		wt%			wt%					MJ/kg		
	wood	6.0	0.2	82.7	17.3	50.8	6.1	42.8	0.2	0.1	<0.1	17.4
	OFMSW	8.0	33.2	90.0	10.0	53.9	6.4	35.6	2.5	0.6	1.0	11.6

		X _{CaO}	X _{MgO}	X _{SiO2}	X _{AI2O3}	X _{others}	x _{CO2} ¹⁾	
Bed materia		wt%						
	Limestone (d _P = 100 – 300 µm)	55.1	0.7	0.4	0.1	0.2	43.5	

1) Mass fraction of CO_2 that is released during calcination

OFMSW – organic fraction of municipal solid waste

 H_u – net calorific value γ – mass fraction in the fuel V – volatiles FC – fixed carbon ad – air dried db – dry basis daf – dry ash free

Temperature variation with wood pellets as fuel

- H₂-concentrations up to 78 %
- Less CO₂-capture at higher temperatures due to CaO/CaCO₃-equilibrium
 - Lower H₂-concentrations
 - Higher CO and CO₂ concentrations

- Flexible adjustment of syngas composition
- Production of syngas for different downstream synthesis processes
- Integration of electrolysis hydrogen
 possible

 operation at higher temperature

Temperature variation with wood pellets as fuel

• Strong influence of the gasification temperature on the gas yield

• Tar content can be reduced significantly by increasing the gasification temperature

Comparison of SEG with wood and OFMSW

- SEG of OFMSW compared to wood:
 - Lower H₂-concentrations
 - Significantly higher concentrations of light hydrocarbons (C2-C4)
 - Lower gas yield

S/C molar ratio: 1.5 Gasification temp.: 635 ±1°C

Summary and conclusion

Summary and conclusion

- SEG process can be operated stably in a 200 kW_{th} DFB pilot scale facility with wood pellets and a flexible variation of the gasification temperature
- Syngas composition/ M-module is strongly influenced by gasification temperature
 due to the temperature dependency of the CaCO₃/CaO equilibrium
 SEG is very flexible in regard to the adjustment of the syngas composition for a subsequent synthesis process
- It has been demonstrated, that the SEG-process can also be operated with OFMSW

Acknowledgement

The FLEDGED project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600.

www.fledged.eu

Disclaimer: The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Thank you!

Selina Hafner

e-mail selina.hafner@ifk.uni-stuttgart.de phone +49 (0) 711 685-67806 fax +49 (0) 711 685-63491

Universität Stuttgart Institut für Feuerungs- und Kraftwerkstechnik Pfaffenwaldring 23 • 70569 Stuttgart • Germany

ıfk