

SORPTION-ENHANCED DIMETHYL ETHER SYNTHESIS (SEDMES)

CONSELIO SUPERIOR DE INVESTIGACIONES CIENTÍFICA

Process intensification: Sorption-Enhanced DME Synthesis

Process intensification: Direct DME Synthesis

Feed gas

CO and CO₂ with stoichiometric H₂ (
$$M = \frac{[H_2] - [CO_2]}{[CO] + [CO_2]} = 2$$
)

Direct DME synthesis equilibrium $2CO + 4H_2 \rightleftharpoons CH_3OCH_3 + H_2O$ $2CO_2 + 6H_2 \rightleftharpoons CH_3OCH_3 + 3H_2O$ $CO_2 + H_2 \rightleftharpoons CO + H_2O$

 ➢ Poor conversion per pass
➢ High CO₂ concentration product (CO + H₂O → CO₂ + H₂)

Process intensification: Sorption-Enhanced DME Synthesis

Feed gas

CO and CO₂ with stoichiometric H₂ ($M = \frac{[H_2] - [CO_2]}{[CO] + [CO_2]} = 2$)

Sorption-enhanced DME synthesis $2CO + 4H_2 \rightarrow CH_3OCH_3 + H_2O$ $2CO_2 + 6H_2 \rightarrow CH_3OCH_3 + 3H_2O$ $CO_2 + H_2 \rightarrow CO + H_2O$

- High conversion per pass
- ➢ High CO concentration product (CO₂ + H₂ → CO + H₂O)

Henry Louis Le Chatelier (1850 – 1936)

(1)

(2)

(3)

Process intensification: Sorption-Enhanced DME Synthesis

Feed gas

CO and CO₂ with stoichiometric H₂ (
$$M = \frac{[H_2] - [CO_2]}{[CO] + [CO_2]} = 2$$
)

 $\frac{\text{Sorption-enhanced DME synthesis}}{2\text{CO} + 4\text{H}_2 \rightarrow \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O}}$ $2\text{CO}_2 + 6\text{H}_2 \rightarrow \text{CH}_3\text{OCH}_3 + 3\text{H}_2\text{O}$ $\text{CO}_2 + \text{H}_2 \rightarrow \text{CO} + \text{H}_2\text{O}$

- High conversion per pass
- ➢ High CO concentration product (CO₂ + H₂ → CO + H₂O)

SEDMES

In sorption-enhanced DME synthesis, SEDMES, the equilibrium of direct DME synthesis is shifted by using a physical adsorbent

Catalyst development

- Syngas → Methanol (CSIC made Cu/ZnO/Al₂O₃, CZA)
 - Effect of CuO loading: > X_{co+co} at higher CuO loading (62 - 58 - 52 - 46 - 39 - 33 wt.%)
 - Effect of the syngas composition: > X_{co+co2} at lower CO₂ content (CO₂/CO= 1.9 and 1)
 - Effect of promoters: no promotion effect of Zr, Ga or Pd
 - Comparison with commercial catalyst Katalco[™]51-8: novel catalyst 62 wt.% CuO loading reached similar TOF

- Methanol → DME (supported heteropolyacids, H₄SiW₁₂O₄₀ or H₃PW₁₂O₄₀)
 - Effect of reaction conditions : > X_{MeOH} favoured at 180<T<240 °C and P> 24 bar
 - Effect of HPA nature: : > X_{MeOH} with HSiW
 - Effect of the support: X_{MeOH}: SiO₂>TiO₂>ZrO₂
 - Comparison with commercial catalysts: γ-Al₂O₃ and HZSM-5
 - HZSM-5: not selective for DME
 - γ-Al₂O₃: : X_{MeOH} with HSiW/SiO₂ or HSiW/TiO₂ thrice that with γ-Al₂O₃

Characterization:

XRD, XPS, N₂ adsorption-desorption isotherms, H_2 -TPR, H_2 -N₂ and Air-TGA, SEM/EDX, TEM-STEM, NH₃-TPD, N₂O-Chemisorption, ICP-OES, NMR and Raman spectroscopy, at the ICP-CSIC. Some of the Cu/ZnO/Al₂O₃ catalysts were analysed by X-ray Absorption Spectroscopy at the ESFR synchrotron facilities in Grenoble (France)

Methanol synthesis & dehydration catalysis

CZA_5 (7500 mLsyngas/h/mLCZA_5)
CZA_50:CZA_5= 1:1 (3750 mLsyngas/h/mLCZA_5+CZA_50)
CZA_50:CZA_5= 2:1 (2500 mLsyngas/h/mLCZA_5+CZA_50)
CZA_50:CZA_5= 2:1 + 3A (2500 mLsyngas/h/mLCZA_5+CZA_50)
CZA_50:CZA_5= 1:1 (7500 mLsyngas/h/mLCZA_5+CZA_50)

• Low Temperature DME production from MeOH with novel catalysts

Stable methanol conversions (maintained at least for 6 h) for the HSiW/X catalysts and $\gamma\text{-}Al_2O_3$ at different conditions of P and T

• Direct synthesis of DME from syngas: catalytic bed optimization CZA:γ-Al₂O₃

CZA_comm	γ -Al ₂ O ₃	m:a (CZA_comm:γ-Al₂O₃)
90 %	10 %	90:10
50 %	50 %	50:50
10 %	90 %	10:90

- The highest DME productivity was obtained with the m:a= 50:50 at 270 °C, 50 bar and 5000 h⁻¹
- Stability test during 270 h: the CO conversion decreased during the TOS, but the CO₂ conversion remains at 10%
- The highest DME selectivity obtained with the m:a = 10:90

m:a

Sorption-enhanced DME synthesis catalysis

• Sorption enhanced DME synthesis from syngas:

Catalytic bed CZA:γ-Al₂O₃:3A

275 °C; 25 bar; 1080 h⁻¹; CO₂/CO=2; CO/CO₂/H₂= 9/18/73 (v/v)

Sorption-enhanced DME synthesis catalysis

Sorption enhanced DME synthesis from syngas:

catalytic bed CZA:γ-HWSi/TiO₂:3A

230-240-250 °C; 25 bar; 5000 h⁻¹; CO₂/CO=1.9; CO/CO₂/H₂= 9/18/73 (v/v)

SEDMES: Experimental validation

SEDMES: Experimental validation

SEDMES: Experimental validation

● SDME ◆ Productivity ◆ TRL4 ◆ TRL5 1.0 0.9 0.8 Normalized productivity (-) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 50 150 250 300 0 100 200 350 400 GHSV (hr-1)

SEDMES: 2D reactor modelling

Reactor model

SEDMES reactor:

- Multitubular fixed bed reactor externally cooled
- Dynamic conditions
- 2D single tube heterogeneous model
- ID catalyst pellet model
- Linear Driving Force for adsorbent pellet

POLITECNICO MILANO 1863

 γ -Al₂O₃

LTA zeolite

SEDMES reactor analysis and design

		Input parameters		
		T _{inlet}	523 K	
		T _{cool}	523 K	
	$\alpha = \frac{CO}{CO + CO_2}$	P _{inlet}	25 bar	
		GHSV	140 h ⁻¹	
		Ads:Cat.	4 : 1 w/w	
	$M = \frac{M_2 - CO_2}{CO + CO_2}$	CZA:γ-Al ₂ O ₃	1 : 1 w/w	
		L _t	6 m	
		М	2	
		Analyzed	parameters	
		α	0.33-0.66	
		D _t	25.6-46.6 mm	

 $Cu/ZnO/Al_2O_3 \gamma - Al_2O_3$

LTA zeolite

SEDMES reactor: effect of $\alpha = CO/CO_x$ on thermal stresses

M. V. Twigg et al., Appl. Catal. A Gen. 212 (2001) 161–174. M.B. Fichtl et al, Appl. Catal. A Gen. 502 (2015) 262–270.

 $2 \text{ CO} + 4 \text{ H}_2 \leftrightarrow \text{ CH}_3\text{ OCH}_3 + \text{H}_2\text{ O} \downarrow_{ads}$

 $2 \text{ CO}_2 + 6 \text{ H}_2 \leftrightarrow \text{ CH}_3 \text{ OCH}_3 + 3 \text{ H}_2 \text{ O} \downarrow_{ads}$

$$\Delta H_r^0 = -250.0 \text{ kJ/mol}_{DME}$$

$$\Delta H_r^0 = -259.7 \text{ kJ/mol}_{DME}$$

SEDMES reactor: effect of the tube diameter on thermal stresses

- A SEDMES 2D reactor model has been developed and validated against bench scale experimental data (TRL4).
- Model results confirm high DME yields for SEDMES, independently of syngas CO/CO_x ratio, which is particularly advantageous at high CO₂ content.
- The thermal dilution of catalyst in adsorbent material (1/4 w/w) allows to operate with larger tube diameters with respect to the conventional synthesis.

SEDMES: Cycle design

- SEDMES
- Cyclic reactor model
- Validated at TRL4

Column 1	ADS	PEQDN	BD	PURGE	PEQUP	REP
Column 2	REP	ADS	PEQDN	BD	PURGE	PEQUP
Column 3	PEQUP	REP	ADS	PEQDN	BD	PURGE
Column 4	PURGE	PEQUP	REP	ADS	PEQDN	BD
Column 5	BD	PURGE	PEQUP	REP	ADS	PEQDN
Column 6	PEQDN	BD	PURGE	PEQUP	REP	ADS

Optimization parameters:

- Gas hourly space velocity during adsorption, purge and repressurization step
- Cycle time
- Pressure equalization step(s)
- Gas recycling
- Operating conditions per step
- Adjusting boundary conditions

SEDMES: Cycle design

Typical for sorption-enhanced processes trade-off between carbon selectivity towards DME and productivity

SEDMES: Conclusions

- Separation-enhanced synthesis technology offers intensified processes for economic valorisation of CO₂-rich syngas
- Sorption-enhanced DME synthesis, SEDMES, has been developed using commercially available materials
- Novel catalysts show promising results: Especially HPA shows high activity for selective DME synthesis
- Validated modelling frameworks have allowed to design the SEDMES reactor and optimise the SEDMES process for Fledged case
- SEDMES technology validated in relevant multicolumn, environment (TRL5)

Contact information

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600

