

SORPTION ENHANCED GASIFICATION – PILOT SCALE EXPERIMENTAL CAMPAIGNS IN DUAL CIRCULATING FLUIDIZED BEDS

SELINA HAFNER, MAX SCHMID

Motivation: Validation of SEG process at pilot scale

FLEDGED project: Novel biomass to DME process

Target: Production of a tailored syngas for Dimethyl Ether synthesis

•
$$M = \frac{y_{H_2} - y_{CO_2}}{y_{CO} + y_{CO_2}} = 2$$

- With and without hydrogen addition
- From different feedstocks:
 - Wood pellets
 - Municipal solid waste pellets

FLEDGED – FLExible Dimethyl ether production from biomass Gasification with sorption enhancED processes SEG – Sorption enhanced gasification PM – particulate matter SEDMES – Sorption Enhanced DME Synthesis

SEG process

Gasifier/ Carbonator

$$CaO + CO_2 \rightleftharpoons CaCO_3$$
 exothermal $CO + H_2O \rightleftharpoons CO_2 + H_2$ exothermal

Combustor/ Calciner

$$CaCO_3 \rightleftharpoons CaO + CO_2$$
 endothermal $C + O_2 \rightleftharpoons CO_2$ exothermal

[1] data from J. M. Valverde, P. E. Sanchez-Jimenez, and L. A. Perez-Maqueda Limestone Calcination Nearby Equilibrium: Kinetics, CaO Crystal Structure, Sintering and Reactivity *The Journal of Physical Chemistry C* 2015 119 (4), 1623-1641, DOI: 10.1021/jp508745u

Pilot scale dual fluidized bed facility

Gasifier/ Carl	bonator	Combustor/ Calciner			
Reactor height 6 m		Reactor height	10 m		
Reactor diameter	Reactor diameter 0.33 m		0.21 m		

Bubbling fluidized bed

- No external heating
- Temperature controlled by solid looping rate
- Solid circulation rate is adjusted by a screw conveyor

Circulating fluidized bed

- No external heating
- Temperature controlled by combustion of biomass and char particles from the gasifier

200 kW_{th} dual fluidized bed facility at University of Stuttgart

Experimental setup: Biomass and limestone composition

Biomass: Wood pellets and MSW pellets

	H _u	Y _{H2O}	γ_{ash}	γ _V	Y _{FC}	Υ _c	γ _H	Υ _N	Ϋ́s	γ _{CI}
	J/g,ad	wt%,ad	wt%,db	wt%,daf						
Wood pellets	17358	6.0	0.2	82.7	17.3	50.8	6.1	0.2	0.1	0.02
MSW pellets Batch 1	11622	8.0	33.2	90.0	10.0	53.9	6.4	2.5	0.6	1.0
MSW pellets Batch 2	12712	10.7	26.2	88.7	11.3	51.6	6.7	2.6	0.6	1.0

 H_u – net calorific value γ – mass fraction in the fuel V – volatiles FC – fixed carbon ad – air dried db – dry basis daf – dry ash free

• Bed material: Limestone ($d_p = 100 - 300 \mu m$)

	X _{CaO}	X _{MgO}	X _{SiO2}	X _{Al2O3}	others	X _{CO2} ¹	
	wt%, db						
Limestone	55.1	0.7	0.4	0.1	0.2	43.5	

¹Mass fraction of CO₂ that is released as CO₂ during calcination

Experimental results: T-variation with wood pellets

- Less CO₂-capture at higher temperatures due to CaO/CaCO₃-equilibrium
 - \rightarrow Lower H₂-concentrations
 - → Higher CO and CO₂ concentrations

- Flexible adjustment of syngas composition
 - → Production of syngas for different downstream synthesis processes
 - → Integration of electrolysis hydrogen possible → operation at higher temperature

Biomass: wood pellets S/C molar ratio: 1.5

Gasification temp.: 635 - 773°C

Experimental results: T-variation with wood pellets

- CH₄ volume fraction decreases with increasing gasification temperature
- C_xH_y volume fraction is almost constant up to 710 °C, after which it decreases

 Tar content can be reduced significantly by increasing the gasification temperature

Biomass: wood pellets S/C molar ratio: 1.5

Gasification temp.: $635 - 773^{\circ}C$

 C_xH_y : C_2H_4 , C_2H_6 , C_3H_6 , C_3H_8 and C_4H_{10}

Experimental results: S/C-variation with wood pellets

- Enhanced H₂ volume fraction at higher S/C ratio
- Reduced CH₄ volume fraction at higher S/C ratio
- Tar concentration is strongly influenced by S/C ratio → reduced concentration for higher S/C

Biomass: wood pellets

S/C molar ratio: 1 - 2

Gasification temp.: 661 ± 3°C

Experimental results: T-variation with ECO pellets

- SEG process can be operated stably with MSW pellets as feedstock
- H₂ volume fractions up to 70 vol%, db
- Flexible adjustment of syngas composition

Biomass: MSW pellets S/C molar ratio: 1.5

Gasification temp.: 625 - 724°C

Summary

- SEG process has been operated stably in the DFB pilot scale facility at the University of Stuttgart with wood pellets and municipal solid waste pellets
- Syngas composition/ M-module is strongly influenced by gasification temperature
 - → due to the temperature dependency of the CaCO₃/CaO equilibrium
 - \rightarrow M = 2, which is required for DME synthesis has been achieved for both feedstocks
 - → SEG is very flexible in regard to the adjustment of the syngas composition for a subsequent synthesis process
 - → flexible syngas production for process operation with and without integration of electrolysis hydrogen possible
- S/C ratio has no strong influence on the permanent gas composition/ M-module, but strongly influences the tar content in the syngas

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600

