

SORPTION-ENHANCED DIMETHYL ETHER SYNTHESIS (SEDMES)

Process intensification: Sorption-Enhanced DME Synthesis

Process intensification: Direct DME Synthesis

Feed gas

CO and CO₂ with stoichiometric H₂ (
$$M = \frac{[H_2] - [CO_2]}{[CO] + [CO_2]} = 2$$
)

Direct DME synthesis equilibrium $2CO + 4H_2 \rightleftharpoons CH_3OCH_3 + H_2O$ $2CO_2 + 6H_2 \rightleftharpoons CH_3OCH_3 + 3H_2O$ $CO_2 + H_2 \rightleftharpoons CO + H_2O$

 ➢ Poor conversion per pass
➢ High CO₂ concentration product (CO + H₂O → CO₂ + H₂)

Process intensification: Sorption-Enhanced DME Synthesis

Feed gas

CO and CO₂ with stoichiometric H₂ ($M = \frac{[H_2] - [CO_2]}{[CO] + [CO_2]} = 2$)

Sorption-enhanced DME synthesis $2CO + 4H_2 \rightarrow CH_3OCH_3 + H_2O$ $2CO_2 + 6H_2 \rightarrow CH_3OCH_3 + 3H_2O$ $CO_2 + H_2 \rightarrow CO + H_2O$

- High conversion per pass
- ➢ High CO concentration product (CO₂ + H₂ → CO + H₂O)

Henry Louis Le Chatelier (1850 – 1936)

(1)

(2)

(3)

Process intensification: Sorption-Enhanced DME Synthesis

Feed gas

CO and CO₂ with stoichiometric H₂ (
$$M = \frac{[H_2] - [CO_2]}{[CO] + [CO_2]} = 2$$
)

 $\frac{\text{Sorption-enhanced DME synthesis}}{2\text{CO} + 4\text{H}_2 \rightarrow \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O}}$ $2\text{CO}_2 + 6\text{H}_2 \rightarrow \text{CH}_3\text{OCH}_3 + 3\text{H}_2\text{O}$ $\text{CO}_2 + \text{H}_2 \rightarrow \text{CO} + \text{H}_2\text{O}$

- High conversion per pass
- ➢ High CO concentration product (CO₂ + H₂ → CO + H₂O)

SEDMES

In sorption-enhanced DME synthesis, SEDMES, the equilibrium of direct DME synthesis is shifted by using a physical adsorbent

● SDME ◆ Productivity ◆ TRL4 ◆ TRL5 1.0 0.9 0.8 Normalized productivity (-) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 50 150 250 300 0 100 200 350 400 GHSV (hr-1)

SEDMES: Modelling

SEDMES model validated at TRL4

Column 1	ADS	PEQDN	BD	PURGE	PEQUP	REP
Column 2	REP	ADS	PEQDN	BD	PURGE	PEQUP
Column 3	PEQUP	REP	ADS	PEQDN	BD	PURGE
Column 4	PURGE	PEQUP	REP	ADS	PEQDN	BD
Column 5	BD	PURGE	PEQUP	REP	ADS	PEQDN
Column 6	PEQDN	BD	PURGE	PEQUP	REP	ADS

Optimization parameters:

- Gas hourly space velocity during adsorption, purge and repressurization step
- Cycle time
- Pressure equalization step(s)
- Gas recycling
- Operating conditions per step
- Adjusting boundary conditions

SEDMES: Cycle design

Typical for sorption-enhanced processes trade-off between carbon selectivity towards DME and productivity

SEDMES: Outlook

✓ SEDMES process validated in relevant environment
Now working towards biomass gasification and P2X as use cases

Biomass gasification Power-to-X CO₂ conversion technology business case in Fledged Power-to-X (CO₂ to DME) Synthetic fuels business case in MeOH CO_2 Interreg project E2C DME Synthetic fuels Polyethylene Polypropylene Constructing pilot demonstrator Interreg 2 Seas Mers Zeeën

SEDMES: Conclusions

- Separation-enhanced synthesis technology offers intensified processes for economic valorisation of CO₂-rich syngas
- Sorption-enhanced DME synthesis, SEDMES, has been developed using commercially available materials
- Validated modelling framework has allowed to design and optimise the SEDMES process for Fledged case
- SEDMES technology validated in relevant multicolumn, environment (TRL5)

Contact information

Jurriaan Boon jurriaan.boon@tno.nl Galina Skorikova galina.skorikova@tno.nl

Jasper van Kampen jasper.vankampen@tno.nl

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600

