

WP 4.3.2 2D DME REACTOR MODELLING

SIMONE GUFFANTI, CARLO GIORGIO VISCONTI, GIANPIERO GROPPI

Introduction

 $CO + 2 H_2 \leftrightarrow CH_3OH$ $CO_2 + H_2 \leftrightarrow CO + H_2O$ $CO_2 + 3 H_2 \leftrightarrow CH_3OH + H_2O$

 $2 \text{ CH}_3\text{OH} \leftrightarrow \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O}$

 $H_2O \rightarrow H_2O_{ads}$

Zeolite 3A

Introduction

Introduction

Reactor model

SEDMES reactor:

- Multitubular fixed bed reactor externally \geq cooled
- **Dynamic conditions** \geq
- 2D single tube heterogeneous model \geq
- 1D catalyst pellet model \geq
- Linear Driving Force for adsorbent pellet

Zeolite 3A

Model validation: experimental set up

Input parameters

T _{inlet}	525 K		
T _{cool}	525 K		
P _{inlet}	25 bar		
GHSV	100 h ⁻¹		
Ads:Cat.	4 : 1 w/w		
CZA:γ-Al ₂ O ₃	1 : 1 w/w		
L _t	2 m		
D _t	38.0 mm		

Model validation: outlet composition experimental vs. model

Outlet molar fractions

Model validation: temperature experimental vs. model

SEDMES reactor analysis and design

			Input parameters	
			T _{inlet}	523 K
			T _{cool}	523 K
		СО	P _{inlet}	25 bar
	$\alpha = \frac{1}{CO + CO_2}$	GHSV	140 h ⁻¹	
		$H_{a} = CO_{a}$	Ads:Cat.	4 : 1 w/w
	$M = \frac{M_2 - CO_2}{CO + CO_2}$	CZA:γ-Al ₂ O ₃	1 : 1 w/w	
		2	L _t	6 m
			Μ	2
			Analyzed	parameters
			α	0.33-0.66
			D _t	25.6-46.6 mm
Cu/ZnO/Al ₂ O	$P_3 \qquad \gamma - AI_2O_3$	Zeolite 3A	·	

SEDMES reactor: effect of α =CO/CO_x on DME yield

J. van Kampen et al., J. CO₂ Util. 37 (2020) 295–308.

SEDMES reactor: effect of $\alpha = CO/CO_x$ on thermal stresses

M. V. Twigg et al., Appl. Catal. A Gen. 212 (2001) 161–174. M.B. Fichtl et al, Appl. Catal. A Gen. 502 (2015) 262–270.

 $2 \text{ CO} + 4 \text{ H}_2 \leftrightarrow \text{ CH}_3\text{ OCH}_3 + \text{H}_2\text{ O}\downarrow_{ads}$ $2 \text{ CO}_2 + 6 \text{ H}_2 \leftrightarrow \text{ CH}_3\text{ OCH}_3 + 3 \text{ H}_2\text{ O}\downarrow_{ads}$

$$\Delta H_r^0 = -250.0 \text{ kJ/mol}_{DME}$$

$$\Delta H_r^0 = -259.7 \text{ kJ/mol}_{DME}$$

SEDMES reactor: effect of the tube diameter on thermal stresses

 $2 \text{ CO} + 4 \text{ H}_2 \leftrightarrow \text{ CH}_3 \text{ OCH}_3 + \text{H}_2 \text{ O} \downarrow_{ads}$

 $2 \text{ CO}_2 + 6 \text{ H}_2 \leftrightarrow \text{ CH}_3 \text{ OCH}_3 + 3 \text{ H}_2 \text{ O} \downarrow_{ads}$

 $\Delta H_r^0 = -250.0 \text{ kJ/mol}_{DME}$

 $\Delta H_r^0 = -259.7 \text{ kJ/mol}_{DME}$

- A SEDMES 2D reactor model validated against bench scale experimental data has been developed.
- Model results confirm that with SEDMES, high DME yields, are obtained independently of syngas CO/CO_x ratio, which is particularly advantageous at high CO₂ content.
- The thermal dilution of catalyst in adsorbent material (1/4 w/w) allows to operate with larger tube diameters with respect to the conventional synthesis.

Thank you for I-BZRU Tour attention

POLITECNICO MILANO 1863

Laboratory of Catalysis and Catalytic Processes

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 727600.

