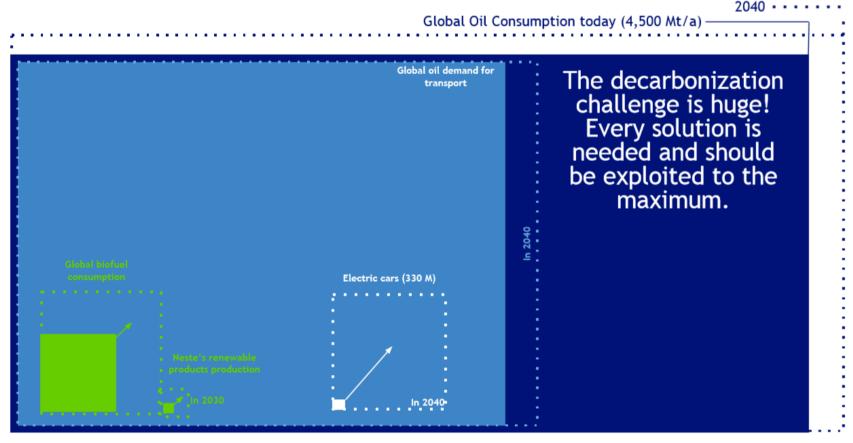


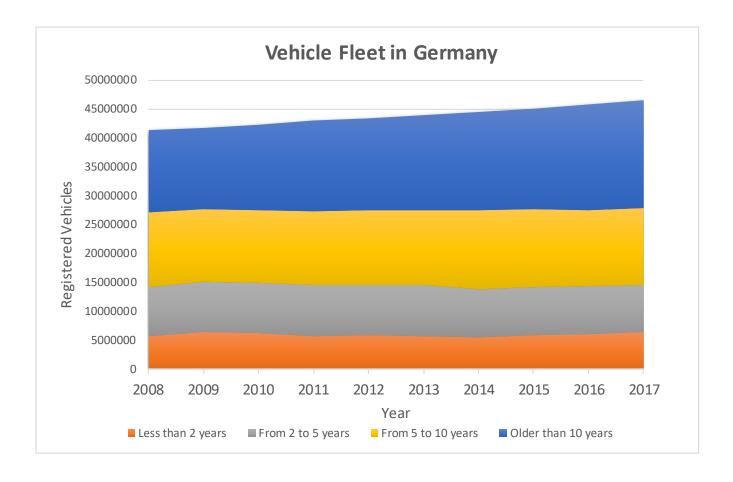
FLEDGED Webinar - October 27th, 2020


DME – Solution for Transport Applications of Today and Tomorrow

W. Willems Ford RIC Aachen

THE DEFOSSILIZATION CHALLENGE

Substituting fossile
energy carriers with
non-fossile
replacements will
require more than one
technical solution in
order to decarbonize
transport for new and
existing vehicles

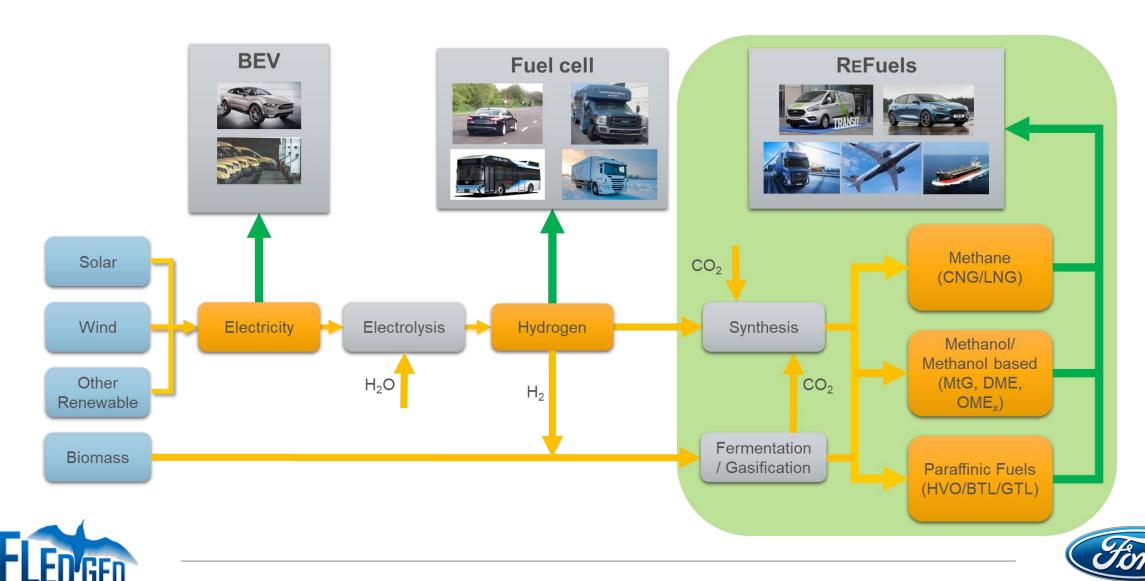

Source: Neste based on IEA World Energy Outlook 2019, Stated Policies Scenario.

MARKET PENETRATION AND ITS IMPACT ON GHG REDUCTION

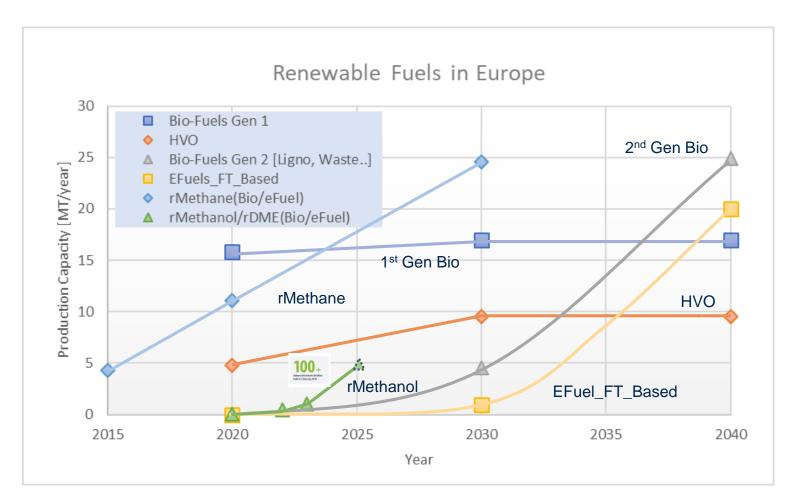
Source: http://ec.europa.eu/eurostat/data/database

- Introduction of new technology and its market penetration takes time
- Disruptive technology changes will have an impact with a significant delay time
- Low-CO₂-Technology compatible to existing IC-based powertrain technology has the potential to have a stronger impact on CO₂ reduction

Sustainable Synthetic-fuels


CHALLENGES AND REQUIREMENTS FOR SYNTHETIC FUELS

- Synthetic fuels should give TtW-CO₂-benefits assuming current CO₂-regulation mechanisms
- New fuels should address various problems at the same time (CO₂ and emissions)
- Time and Technology Readiness
 - Synthetic fuel solutions need to be available as quickly as possible
 - Fuel standards should be available
- Synthetic fuels should be available globally at reasonable cost
- Synthetic fuels should be compatible with current powertrain technology



REFUELS → ELECTRO AND/OR BIOBASED (2ND GEN) FUELS

RENEWABLE FUEL AVAILABILITY

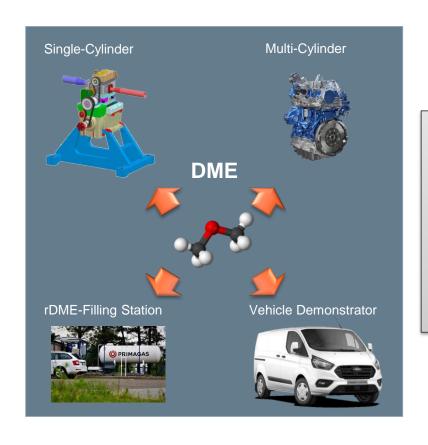
Renewable Fuel production currently at a low level (< 10 %) but increasing

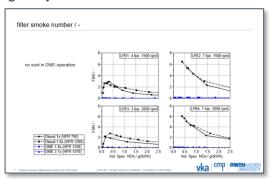
- Liquid Bio-fuels
 - Bio-1st Gen will remain but will not increase further
 - Bio-2nd Gen will increase significantly (Lignocell, residue, waste)
 - HVO will increase but will stabilize at certain level
- Methane currently highest availability (Biogas, eGas evolving)
- Methanol based fuels steeply increasing (projects North-Africa, Australia, Patagonia in pipeline)

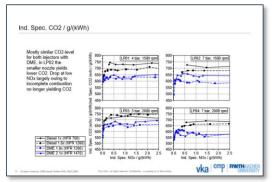
BMWI-C3-MOBILITY-CONSORTIUM - " CO2-NEUTRAL FUELS BASED ON METHANOL"

 Project funded by the German Ministry of Economy looking at Methanol-based Fuels (Methanol, MtG, OME, DME) for PassCar, light/heavy-duty and marine applications

- Air-Path, Combustion System, AT
- RDE-Compatible
- Target Euro 6+







BMWI-C3-MOBILITY-CONSORTIUM - " CO2-NEUTRAL FUELS BASED ON METHANOL"

Single-Cylinder Measurements @ VKA/RWTH Aachen

Multi-Cylinder Measurements @ Ford R&A

Filling station in preparation @ SHV Energy/Primagas

DME-STANDARDIZATION DIN TS 51698

- Kickoff of Standardization Efforts: November 2018
- DIN Standard: Development of a new DME-Standard dedicated to automotive/heating applications
- DIN Workgroup lead by Ford and Tec4Fuels

Translation into German

- Extended ISO-Standard
- Monofuel (→ no blend)
- Odorant: → 3-nose test (no sulfur additive preferred)
- Specificying Lubricity by defining lubricity agent and concentration

National Standardisation/Mirror organization of ISO

Dimethylether (DME) für den Einsatz als Kraftstoff (NAK 51698)

- Joint developement of requirements and specifications
- DIN TS 51698 almost finished → Released early next year
- Fuel in C³-Mobility according to DIN Technical Specification

UPCOMING ACTIVITIES – DME BLENDING

Start 2021

	Diesel-Base	Powertrain-Solutions	
Fuel/Blend	100% Diesel = X (X=EN590,EN16540, BioDiesel) Mono-Fuel	DME+X (X=EN590,EN16540, BioDiesel) Bi-Fuel	100% DME Mono-Fuel
Tank-system	Diesel-System	Diesel+Pressurized-Tank-System	Pressurized-Tank-System
Injection System (Rail/Injektor/Pump)	Diesel-Common-Rail Fuel-lubricated	= Diesel-System	DME-Common-Rail Oil-lubricated
Combustion System (Bowl, Nozzle, Swirl)	Optimized for Diesel	= Diesel-Definition	Optimized for DME
Airpath (Turbo-charger, EGR, Cooling circuit)	Optimized for Diesel	= Diesel-Airpath	= Diesel-Airpath (evt. simplified)
Aftertreatment System (DPF,LNG,SCR)	Optimized for Diesel	= Diesel-System	Optimized für DME (Simplified → DPF)
Complexity		Moderate + Tank-System + Mixing Unit HP-Pumpe (dynamic operation)	High + Tank-System + Injection-System + Combustion System + simplified AT-System

- 1. Definition of suitable fuel blends: Suitable cold-stable DME-X (X=Diesel(EN590), HVO/GTL (EN15940), BioDiesel) with appropriate additives are to be developed for operation with an almost unchanged injection/air/exhaust aftertreatment system.
- **DME-Quality**: The influence of the DME quality (impurities during production) on combustion and emission behaviour shall be shown in the blends but also in a 100% DME configuration on the single-cylinder or full engine.
- **Demonstration on vehicle**: Based on the demonstration in a DME/DME blend capable vehicle, the drivability of the most promising blend towards the end of the project will be demonstrated

CONCLUSIONS

- Synthetic fuels have a strong potential to play a major role in future sustainable mobility
- For CI based powertrain applications, DME is a very attractive Diesel fuel replacement since is provides benefits with regard to Tank-to-Whell efficiency, criteria emissions and energy density
- The potential of DME has been proven in a public funded project (BMWi) led by Ford, and will be investigated in follow-up projects including vehicle and infrastructure demonstration
- Continuation of investigations related to DME and other promising Synfuel-candidates important in order to support defossilization

