
EXPERIMENTAL ACTIVITIES IN THE 30 KWTH BUBBLING FLUIDIZED BED GASIFIER AT ICB-CSIC

<u>Isabel Martínez</u>*, Gemma Grasa, Maria S. Callén, Jose M. López, Ramón Murillo Instituto de Carboquímica, Spanish National Research Council (CSIC), Zaragoza (SPAIN)

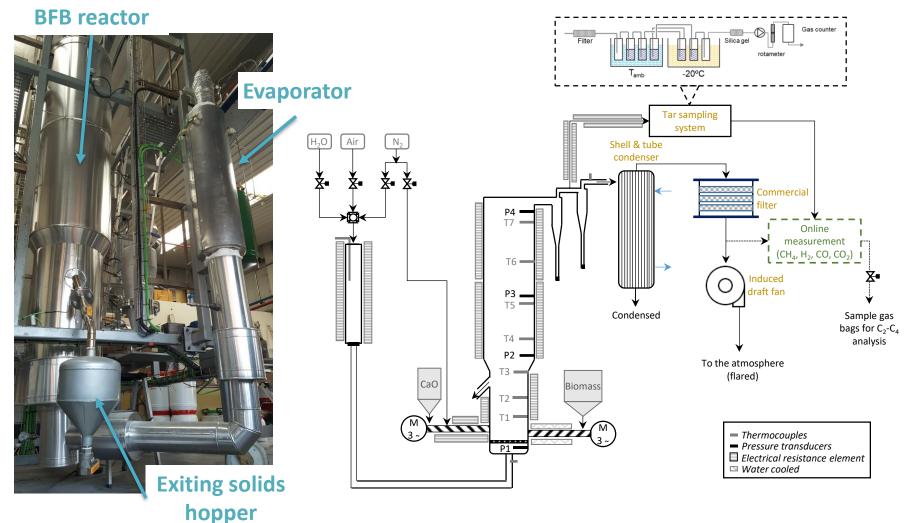
Summary of the activities performed at the 30 kWth BFB plant (TRL-4)

Assess the performance of the Sorption Enhanced Gasification process in a 30 kW_{th} bubbling fluidized bed reactor (BFB) placed at the Instituto de Carboquímica (CSIC) (Zaragoza, Spain)

Main operating variables

- Steam/biomass ratio
- Sorbent/biomass ratio
- Gasifier temperature

- Syngas yield and composition (H₂/CO/CO₂ and light hydrocarbons up to C₄)
- Char conversion in the gasifier
- Tar formation (yield and composition)



Description of the 30 kW_{th} BFB gasification plant

BFB reactor

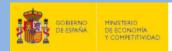
- Two zones with different ID
 1 m with 0.15 m
 2 m with 0.2 m
- Bottom dense zone of 0.54 m
- Two independent screw feeders at the bottom
- Lateral solid exit overflow
- Temperature and pressure monitored along the reactor

Tar sampling system with isopropanol (GC-MS analysis)

On-line gas analyser (CH_4 , H_2 , CO, CO_2) and gas sampling bags analysis through GC (up to C_4)

Biomass feedstocks characterization

6 biomass feedstocks have been tested (lignocellulosic biomass from agriculture and forestry activities (3), organic fraction of municipal solid waste (2) and residue from wine industry (1))


	WOOD PELLETS	GRAPE SEEDS	MSW-pellets	MSW biomass	Straw pellets	Pine wood
%wt.	Proximate analysis					
% moisture	5.55	6.30	5.90	6.56	6.51	8.09
% ash	0.36	4.30	32.20	32.47	4.87	1.30
% volatile matter	78.80	65.12	55.40	53.63	70.28	72.94
% fixed carbon	15.29	24.28	6.60	7.34	18.33	17.67
% S	0.02	0.12	0.66	0.21	0.13	0.05
% CI	0.00	0.06	0.43	0.56	0.36	0.01
LHV (MJ/kg)	17.59	20.51	12.84	13.47	16.06	16.69

Deliverable 2.1. "Characterisation of raw materials for sorption enhanced gasification", June 2017, Public (http://www.fledged.eu/download/deliverables/)

Additional information

Sorbent used

- ☑ **High purity limestone** used (> **92** %wt. CaO in calcined material)
- \square Material calcined in the BFB reactor using a low-S fuel (0.55 g_{CO2}/g calcined material)

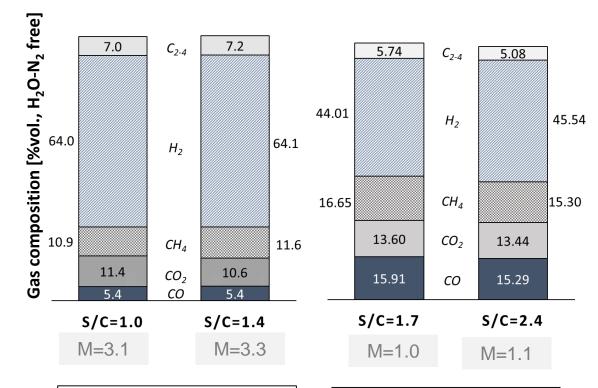
Operating variables analyzed

$$\underline{Steam\text{-}to\text{-}Carbon\ ratio}\left(\textbf{S/C}\right) = \frac{kmol/_h\ steam\ fed\ into\ the\ gasifier\ (excl.\ biomass\ moisture)}{kmol/_h\ C\ in\ the\ biomass\ fed\ into\ the\ gasifier}$$

Calcium-to-Carbon ratio (CaO/C) =
$$\frac{kmol}{h}$$
 CaO fed into the gasifier with the sorbent $\frac{kmol}{h}$ C in the biomass fed into the gasifier

M-module (M) =
$$\frac{(N_{H2} - N_{CO2})}{(N_{CO} + N_{CO2})}$$

Deliverable 2.1. "Characterisation of raw materials for sorption enhanced gasification", June 2017, Public (http://www.fledged.eu/download/deliverables/)



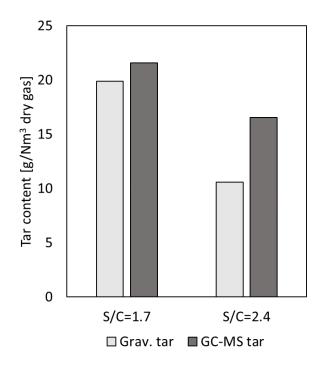
Effect of the steam excess used in the gasifier (S/C ratio)

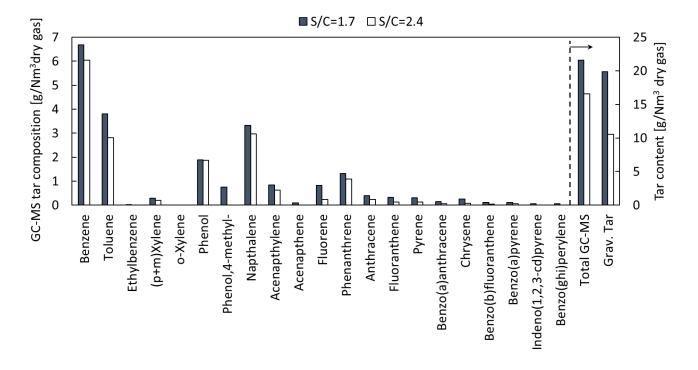
✓ No significant influence on permanent gases (M-module constant) and light hydrocarbons content.

In dual fluidized bed systems, variations in M-modules are observed since S/C ratio effect cannot be isolated (Ca/C is adjusted)

- ✓ Fixed carbon conversion favored with S/C ratio (constant T and solid residence time). For example, X_{FC}=29 % (S/C=1.4) vs. 18 % (S/C=1.0)
- ✓ Syngas yield slightly improved with the increase in fixed carbon conversion (limited fixed carbon contents)

MSW-derived feedstock CaO/C ratio= 1.1-1.2 Temperature= 707-710°C Wood pellets
CaO/C ratio= 0.7-0.8
Temperature= 640°C

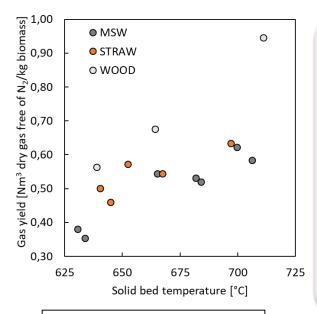




Effect of the steam excess used in the gasifier (S/C ratio)

Wood pellets
CaO/C ratio= 0.7-0.8
Temperature= 640°C

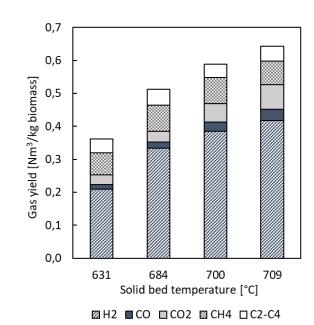
✓ Tar yield is influenced by the steam excess used, decreasing the amount of tar as the S/C ratio is raised (steam cracking and reforming reactions)

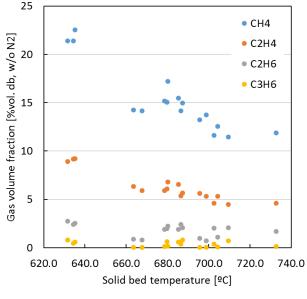


Effect of the gasification temperature

- > Operating variable influencing most the syngas quality (yield, composition, tars) and solids conversion
- > Regardless of the biomass, syngas yield is significantly raised with the gasification temperature

S/C ratio: 1.4 (mol/mol)
Variable CaO/C ratio

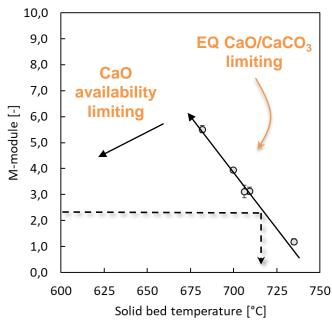

Devolatilization

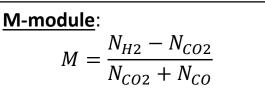

Steam cracking and reforming reactions of hydrocarbons and tars

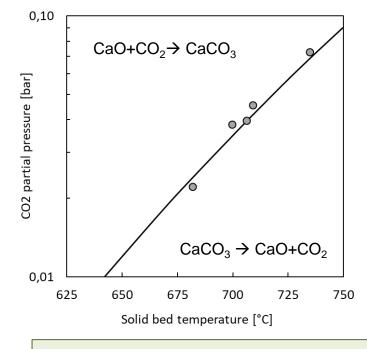
Char gasification

 $C_{(s)} \rightarrow CO, CO_2, H_2, CH_4$

Composition (VM and FC) of the biomass and gasification kinetics







Effect of the gasification temperature

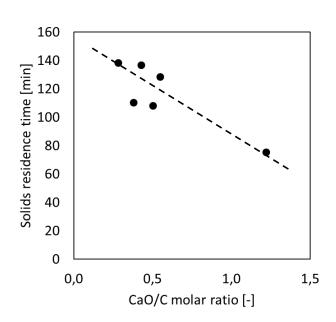
M-module in the syngas varies with the temperature. Two regions can be identified (specific of BFB compared to dual CFB, i.e. lower sorbent/biomass proportions and higher CaO residence times in the gasifier)

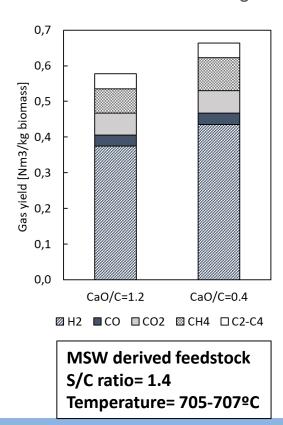
- ☑ For high temperatures, the M-module is limited by the CaO carbonation reaction equilibrium.
 - There is enough CaO but equilibrium CO_2 partial pressure limits carbonation (as $T\uparrow$, CO_2 content in the gas \uparrow and so M \downarrow)
- For low temperatures, M-module limited by the active CaO available in the solid bed

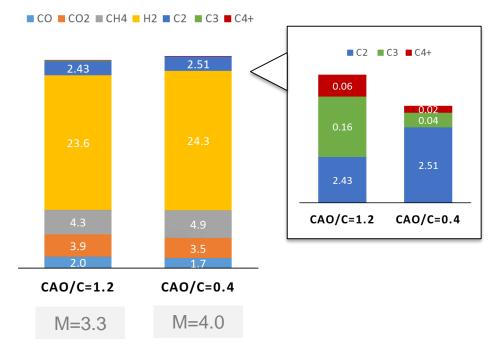
Equilibrium allows reaching very low CO₂ contents, but **there is not enough CaO**

For DME production, **M module slightly higher than 2 is needed** (small composition adjustments along the syngas cleaning path).

Temperature and sorbent/biomass proportion needed can be elucidated for each biomass



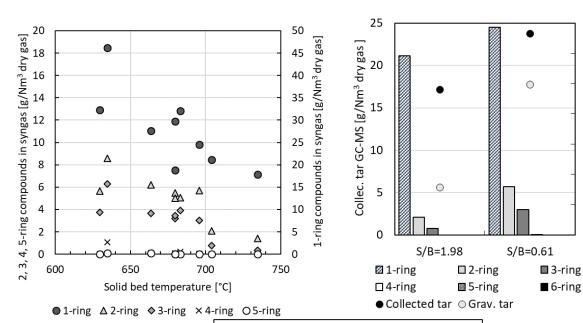



Effect of the sorbent/biomass proportion in the gasifier

- Main influence of the sorbent excess used is found in tar formation
- > Sorbent excess used influences solid residence time in the gasifier and so char conversion

Increasing the amount of calcined CaO into the gasifier (CaO/C) makes τ to be reduced

Slightly higher H_2 contents as τ is increased (lower CaO/C) and so M-modules



Influence of operating conditions on tar yield and composition

- > Tar content in the syngas can be reduced by increasing temperature, as well as sorbent and steam excess (cracking and reforming reactions favored)
- → Heavier tar compounds result into lighter tars and linear hydrocarbons (usually 1-, 2- and 3-ring tars → linear olefins and non saturated C₂-C₄, CO, H₂...)

15 % Grav. tar

2 Collec.

1-, 2- and 3-ring compounds are quite sensitive to temperature and sorbent excess

Catalytic tar cracking effect of CaO confirmed

Benzene is the major 1-ring tar determined by GC-MS for all the feedstocks studied (followed by toluene)

Naphthalene (MSW) and phenols (lignocellulosic) are the third most common tars

Conclusions

- □ The performance of the flexible Sorption Enhanced Gasification process has been successfully studied for 6 different biomass feedstocks
- ☐ The individual effect of the main operating variables of the SEG process (steam excess, temperature and sorbent/biomass proportion) has been evaluated
- Experimental results obtained at the 30 kW_{th} BFB gasifier have been validated with those obtained in a dual FB reactor system (high sorbent/biomass ratio needed at BFB)
- Operating conditions window suitable for producing a tailored syngas with the correct H₂/CO/CO₂ proportion for the DME synthesis has been obtained for those feedstocks tested under wider operating conditions

Detailed information

□ Public documents at FLEDGED website:

Deliverable 2.1. "Characterisation of raw materials for sorption enhanced gasification", **June 2017**, Public (http://www.fledged.eu/download/deliverables/)

Deliverable 2.5. "Results of the sorption enhanced gasification in CSIC and USTUTT lab-scale testing", **July 2019** (revised version by September 2019), Public (http://www.fledged.eu/download/deliverables/)

Open Access scientific publications:

Martínez, I., Kulakova, V., Grasa, G., Murillo, R. *Experimental investigation on sorption enhanced gasification (SEG) of biomass in a fluidized bed reactor for producing a tailored syngas*, **Fuel**, 259 (**2020**) 116252

Martínez, I., Grasa, G., Callén, M.S., López, J.M., Murillo, R. *Optimised production of tailored syngas from municipal solid waste (MSW) by sorption-enhanced gasification*, **Chemical Engineering Journal**, accepted June **2020**, DOI: 10.1016/j.cej.2020.126067

Callén, M.S., Martínez, I., Grasa, G., López, J.M., Murillo, R. *Principal Component Analysis and Partial Least Square Regression Models to under-stand sorption enhanced biomass gasification*, **to be submitted**

☐ General information

www.fledged.eu/

Thanks for your attention!

Spanish National Research Council (CSIC) Instituto de Carboquímica, Environmental Research Group imartinez@icb.csic.es

Find out more about us: https://www.icb.csic.es/

This project has received funding from the European Union's Horizon 2020 research and innovation Programme under grant agreement No 727600

