

PILOT SCALE EXPERIMENTAL CAMPAIGNS IN DUAL CIRCULATING FLUIDIZED BEDS

SELINA HAFNER, MAX SCHMID FLEDGED FINAL WORKSHOP OCTOBER 2020

Motivation: Validation of SEG process at pilot scale

T = 850 - 920 °C

Additional Air CaCO₃

biomass

FLEDGED project: Novel biomass to DME process

<u>Combustor/Calciner</u>

 $CaCO_3 \rightleftharpoons CaO + CO_2$ endothermal $C + O_2 \rightleftharpoons CO_2$ exothermal

Ifk

T = 600 – 750 °C

biomass

H₂O

CO

CaCO₃, char

Gasifier/ Car	bonator	Combustor/ Calciner			
Reactor height	6 m	Reactor height	10 m		
Reactor diameter	0.33 m	Reactor diameter	0.21 m		

Bubbling fluidized bed

- No external heating
- Temperature controlled by solid looping rate
- Solid circulation rate is adjusted by a screw conveyor

Circulating fluidized bed

- No external heating
- Temperature controlled by combustion of biomass and char particles from the gasifier

200 kW dual fluidized bed facility at University of Stuttgart

ıfk

Measurement methods

- Plenty of temperature measurements and pressure transducers
- Continuous measurement of gas flows in and out of the reactors
- Measurement of **transfer mass flow** between combustor and gasifier
- Frequent **solid sampling** from gasifier bottom loop seal and combustor loop seal
- Continuous gas measurement of permanent gases
- Semi-continuous measurement of lower
 hydrocarbons (C₂H₄, C₂H₆, C₃H₆, C₃H₈, C₄H₁₀)
- Wet chemical sampling of **tars** according to the tar protocol (CEN/TS 15439)

Experimental procedure

- Operation 24/7 in a 3 shift mode
- Heating up with a natural gas burner followed by combustion of wood pellets

Experimental setup: Biomass and limestone composition

Biomass: Wood pellets and MSW pellets

	H _u	γ _{H2O}	γ_{ash}	٧v	γ _{FC}	γ _c	Ŷ _H	ΥN	۷s	γ _{cl}
	J/g,ad	wt%,ad	wt%,db			wt	%,daf			
Wood pellets	17358	6.0	0.2	82.7	17.3	50.8	6.1	0.2	0.1	0.02
MSW pellets Batch 1	11622	8.0	33.2	90.0	10.0	53.9	6.4	2.5	0.6	1.0
MSW pellets Batch 2	12712	10.7	26.2	88.7	11.3	51.6	6.7	2.6	0.6	1.0

 H_u – net calorific value γ – mass fraction in the fuel V – volatiles FC – fixed carbon ad – air dried db – dry basis daf – dry ash free

• Bed material: Limestone ($d_P = 100 - 300 \mu m$)

	X _{CaO}	X_{MgO}	x _{siO2}	X _{AI2O3}	others	x _{co2} 1
	wt%, db					
Limestone	55.1	0.7	0.4	0.1	0.2	43.5

 $^1\mbox{Mass}$ fraction of \mbox{CO}_2 that is released as \mbox{CO}_2 during calcination

- H₂-concentrations up to 77 %
- enhanced CO₂-capture at lower temperatures due to CaO/CaCO₃-equilibrium

 \rightarrow Higher H₂ production due to water-gasshift reaction

- Flexible adjustment of syngas composition
 - \rightarrow Production of tailored syngases for different downstream synthesis processes
 - \rightarrow Integration of electrolysis hydrogen possible

Biomass: wood pellets S/C molar ratio: 1.5 Gasification temp.: 635 - 773°C

ıfk

800

 $y_{H2} - y_{CO}$

 $y_{co} + y_{co}$

H₂ addition

750

gas volume fractions

y_{co}, y_{co2} in %, db

- CH₄ volume fraction decreases with increasing gasification temperature
- C_xH_y volume fraction is almost constant up to 710 °C, after which it slightly decreases

- Tar content can be reduced significantly by increasing the gasification temperature
- For $\vartheta_{\text{gasification}} > 660 \,^{\circ}\text{C}$ higher amount of GC-FID tars \rightarrow enhanced share of light tars

Biomass: wood pellets S/C molar ratio: 1.5 Gasification temp.: 635 - 773°C

 C_xH_y : C_2H_4 , C_2H_6 , C_3H_6 , C_3H_8 and C_4H_{10}

Experimental results: S/C-variation with wood pellets

CO CO₂ H₂

- Enhanced H₂ and reduced CO volume fraction at higher S/C ratio
 - \rightarrow WGS reaction shifted towards product side
- Reduced CH₄ volume fraction at higher S/C ratio
- Tar content is significantly reduced by increasing S/C ratio

Biomass: wood pellets S/C molar ratio: 1 - 2 Gasification temp.: 661 ± 3°C

80

70

60

Experimental results: T-variation with MSW pellets

- SEG process can be operated stably with MSW pellets as feedstock
- H₂ volume fractions up to 70 vol%, db
- Flexible adjustment of syngas composition
- High CH₄ and C_xH_y volume fractions

Biomass: MSW pellets S/C molar ratio: 1.5 Gasification temp.: 625 - 724°C

ıfk

- Successfull operation of the SEG process with wood and MSW pellets, without remarkable operational problems
- Production of syngases with variable $H_2/CO/CO_2$ ratio possible for both feedstocks
 - **Tailored syngas** production **for DME** synthesis with and without H₂ addition
- Gasification temperature is the operating variable influencing most syngas quality (yield, composition, tars)
- Tar content can strongly be influenced by variation of the steam to carbon ratio
- SEG with MSW pellets results in reduced H₂ and CO contents and enhanced contents of CH₄, lower hydrocarbons and tars compared to wood pellets

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600

