12th International Conference on Fluidized Bed Technology May 23-26, 2017, Krakow

## Modelling of indirect steam gasification in circulating fluidized bed reactors

Kari Myöhänen<sup>1</sup>, Juha Palonen<sup>2</sup>, Timo Hyppänen<sup>1</sup>

<sup>1</sup> LUT School of Energy Systems
Lappeenranta University of Technology
<sup>2</sup> AMEC Foster Wheeler Energia Oy, Finland



## Contents

- Indirect steam gasification
- Model description
- Modelling results
- Summary



Design of a 140 MWth air-blown gasifier by AMEC Foster Wheeler

## **Biomass gasification**

- Renewable, weather independent energy source
  - Gasification
    - $\rightarrow$  Syngas (CO, H<sub>2</sub>, CO<sub>2</sub>, C<sub>x</sub>H<sub>y</sub>, H<sub>2</sub>O)
      - $\rightarrow$  SNG, FT-diesel, dimethyl ether, methanol, ...
- Modelling needed to support development of new process concepts and scale-up.
- Target of study: development of modelling tool for comprehensive simulation of interconnected CFB processes for indirect gasification.



12 MWth lime kiln gasifier, Stora Enso mill, Varkaus, Finland.

## Indirect steam gasification



## Three-dimensional model (CFB3D)

- In-house Fortran-code developed at LUT.
- Steady-state, semi-empirical engineering model.
- Applied for air/oxygen fired combustion, gasification, and calcium looping in bubbling and circulating fluidized bed processes.



Lappeenranta University of Technology

320 MWth gasifier

(6 bar, abs)

## Modelled reaction system



## Geometry and mesh

#### - Gasifier

- Fuel input ≈ 12 MWth.
- Diameter 1.6 m, height 15 m.
- Fluidized by steam.
- Woody biomass & secondary steam to level height 1.9 m.
- Combustor
  - Max. fuel input  $\approx$  2.1 MWth.
  - Diameter 1.4 m, height 15 m.
  - Fluidized by air.
  - Make-up sand, limestone, and secondary air to level 1.1 m.
  - Additional fuel feed to level 0.5 m.
- Reactors coupled in code.



## **Boundary conditions**

- Fuel = wood based biomass
  - 11% char, 62% volatiles, 25% moisture, LHV 14 MJ/kg,af.
- Four cases with varying fuel feed to combustor (0...2.1 MWth).
- Same excess oxygen in combustor in each case (3.94 %-vol,dry).

| Parameter               | Units  | Case A01 | Case A02 | Case A03 | Case A04 |
|-------------------------|--------|----------|----------|----------|----------|
| Steam flow to gasifier  | (kg/s) | 0.45     |          | •••      | •••      |
| Primary steam ratio     | (%)    | 40       | •••      | •••      | •••      |
| Steam temperature       | (°C)   | 180      | •••      | •••      | •••      |
| Air flow to combustor   | (kg/s) | 1.84     | 2.06     | 1.62     | 1.38     |
| Primary air ratio       | (%)    | 50       | •••      | •••      | •••      |
| Air temperature         | (°C)   | 280      | •••      |          | •••      |
| Fuel feed to gasifier   | (kg/s) | 0.9      | •••      | •••      | •••      |
| Fuel feed to combustor  | (kg/s) | 0.10     | 0.15     | 0.05     | 0.00     |
| Sand feed               | (kg/s  | 0.05     | •••      | •••      | •••      |
| Limestone feed          | (kg/s) | 0.01     | •••      | •••      | •••      |
| Solid feed temperatures | (°C)   | 30       |          | •••      |          |

## 3D-model results at centre-plane, Case A01



# Water-gas & Boudouard reaction and shift conversion (Case A01)



## Syngas composition as function of temperature



Increasing water-gas reaction  $(C + H_2O \rightarrow CO + H_2) \rightarrow$  Higher CO & H<sub>2</sub>

Decreasing shift conversion (CO +  $H_2O \rightarrow CO_2 + H_2$ )  $\rightarrow$  Higher CO, lower CO<sub>2</sub> &  $H_2$ 

Net effects as function of temperature:

- $H_2 \approx \text{constant}$
- CO increasing
- CO<sub>2</sub> decreasing

## Heat value of syngas and cold gas efficiency



Higher temperature  $\rightarrow$  Higher gas yield from char

 $\rightarrow$  Increasing heat value of gas

(Opposite effect when compared with air- or oxy-fired gasification)

The increase in heat value of gas is smaller than the increase of fuel input  $\rightarrow$  Decreasing cold gas efficiency

## Summary

- Indirect steam gasification system with interconnected CFB reactors was successfully simulated by a semi-empirical model approach.
- Process can be operated without additional fuel feed to combustor.
- Effects of increasing the fuel feed to combustor:
  - Higher gasification temperature.
  - Slightly higher heat value of syngas.
  - Lower cold gas efficiency.
- Future targets:
  - Validation of model parameters based on measurement data.
  - Modelling of sorbent enhanced gasification (FLEDGED-project).

# Thank you for your attention!

kari.myohanen@lut.fi www.fledged.eu



*This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600* 

