

THREE-DIMENSIONAL SIMULATION OF SORBENT ENHANCED GASIFICATION

JULY 2020 KARI MYÖHÄNEN

Introduction

- In the FLEDGED project, models at different scales have been developed for sorbent enhanced gasification (SEG).
 - 0D-model => fast
 - 1D-model => more detailed
 - 3D-model => mixing in large scale
- The following presents 3D model results of a 100 MWth SEG unit in a reference point (OP1).
 - Fuel: wood pellets, LHV_{af} 16 MJ/kg, feed 6.58 kg/s (gasifier) / 0.07 kg/s (combustor)
 - Molar C/S-ratio 1.50.
 - Fluidization velocity approx. 4.5 m/s.
 - Module M = 2. $M = \frac{H_2 CO_2}{CO + CO_2}$

3D model frame

- In-house Fortran-code, steady-state, semi-empirical model.
- Initially for circulating fluidized bed combustion.
- Later developed and applied for various multiphase systems
 - Air/oxygen fired combustion, gasification, calcium looping, bubbling fluidized bed, and even for entrained flow.

Modelled phenomena in multiphase reactors (simplified version)

Main updated model features during the FLEDGED project

- New fuel component: tar
 - Proximate analysis: char + volatiles + moisture + tar + ash.
- New gas component: toluene C₇H₈
 - Gases: O₂, CO₂, H₂O, SO₂, CO, H₂, CH₄, C₂H₄, Cg, H₂S, NO, N₂O, HCN, NH₃, Ar, N₂, C₇H₈
- Modelling of tar release
 - Liquid/solid tar component in fuel released as gaseous toluene.
 - Release rate (1/s) determined as:

$$k_{tar,i} = a_{tar} \left(\frac{d_{p,i}}{d_{ref}}\right)^{b_{tar}} \left(1 - w_{H2O,i}\right)^{c_{tar}} \exp\left(\frac{-E_{tar}}{RT}\right)$$
 (1/s)

Effects: particle size moisture temperature

- Combustion of tar: C₇H₈ + 3.5 O₂ → 7 CO + 4 H₂
 - Combustion rate defined by similar Arrhenius expression as with other gases. $r_{\text{C7H8}}^{\prime\prime\prime} = k_{C7H8} A_{0,C7H8} C_{C7H8} C_{0_2}^{b_{O_2}} C_{\text{H}_2\text{O}}^{b_{H2O}} \exp\left(\frac{-E_{C7H8}}{RT}\right)$ (mol/m₃s)
- Composition of volatiles updated according to experimental data.

Simplified layout of the coupled reactors

3D modelling of the sorbent enhanced gasification

Modelling of tar

- Tar released to gas phase mainly at the bottom of the gasifier
 - Local maximum at the feeding point.
- At top of the reactor, the reacting fuel is mainly char.

Temperature and total reaction heat profiles

Calcination and carbonation profiles

CO₂, CO (gasifier) and O₂ (combustor) profiles

Gas composition and main reaction profiles of gasifier

• In product gas module
$$M = \frac{H_2 - CO_2}{CO + CO_2} = \frac{60.6 - 12.9}{11.0 + 12.9} = 2.0$$

Summary

- A 3D-model developed for sorbent enhanced gasification.
 - Solution of coupled gasifier-combustor system.
- The 3D-model can be used to study local mixing phenomena inside the reactors.
- The global results were satisfactory: desired M-module reached.
- The entry points of circulating flow from the adjacent reactor cause local re-calcination and re-carbonation.
- The 3D-model can be utilized for further development of the reactor designs.

Find out more: <u>www.fledged.eu</u>

Contact us: info@fledged.eu

Direct feedback/questions: <u>kari.myohanen@lut.fi</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600

